Source code for deepinv.physics.mri

from typing import List, Optional, Union

from numpy import ndarray
import torch
from torch import Tensor
from torchvision.transforms import CenterCrop

from deepinv.physics.forward import DecomposablePhysics, LinearPhysics
from deepinv.physics.time import TimeMixin


[docs] class MRIMixin: r""" Mixin base class for MRI functionality. Base class that provides helper functions for FFT and mask checking. """
[docs] def check_mask( self, mask: Tensor = None, three_d: bool = False, device: str = "cpu", **kwargs ) -> None: r""" Updates MRI mask and verifies mask shape to be B,C,...,H,W where C=2. :param torch.nn.parameter.Parameter, torch.Tensor mask: MRI subsampling mask. :param bool three_d: If ``False`` the mask should be min 4 dimensions (B, C, H, W) for 2D data, otherwise if ``True`` the mask should have 5 dimensions (B, C, D, H, W) for 3D data. :param torch.device, str device: mask intended device. """ if mask is not None: if isinstance(mask, ndarray): mask = torch.from_numpy(mask) mask = mask.to(device) while len(mask.shape) < ( 4 if not three_d else 5 ): # to B,C,H,W or B,C,D,H,W mask = mask.unsqueeze(0) if mask.shape[1] == 1: # make complex if real mask = torch.cat([mask, mask], dim=1) return mask
[docs] @staticmethod def to_torch_complex(x: Tensor): """[B,2,...,H,W] real -> [B,...,H,W] complex""" return torch.view_as_complex(x.moveaxis(1, -1).contiguous())
[docs] @staticmethod def from_torch_complex(x: Tensor): """[B,...,H,W] complex -> [B,2,...,H,W] real""" return torch.view_as_real(x).moveaxis(-1, 1)
[docs] @staticmethod def ifft(x: Tensor, dim=(-2, -1), norm="ortho"): """Centered, orthogonal ifft :param torch.Tensor x: input kspace of complex dtype of shape [B,...] where ... is all dims to be transformed :param tuple dim: fft transform dims, defaults to (-2, -1) :param str norm: fft norm, see docs for :func:`torch.fft.fftn`, defaults to "ortho" """ x = torch.fft.ifftshift(x, dim=dim) x = torch.fft.ifftn(x, dim=dim, norm=norm) return torch.fft.fftshift(x, dim=dim)
[docs] @staticmethod def fft(x: Tensor, dim=(-2, -1), norm="ortho"): """Centered, orthogonal fft :param torch.Tensor x: input image of complex dtype of shape [B,...] where ... is all dims to be transformed :param tuple dim: fft transform dims, defaults to (-2, -1) :param str norm: fft norm, see docs for :func:`torch.fft.fftn`, defaults to "ortho" """ x = torch.fft.ifftshift(x, dim=dim) x = torch.fft.fftn(x, dim=dim, norm=norm) return torch.fft.fftshift(x, dim=dim)
[docs] def im_to_kspace(self, x: Tensor, three_d: bool = False) -> Tensor: """Convenience method that wraps fft. :param torch.Tensor x: input image of shape (B,2,...) of real dtype :param bool three_d: whether MRI data is 3D or not, defaults to False :return: Tensor: output measurements of shape (B,2,...) of real dtype """ return self.from_torch_complex( self.fft( self.to_torch_complex(x), dim=(-3, -2, -1) if three_d else (-2, -1) ) )
[docs] def kspace_to_im(self, y: Tensor, three_d: bool = False) -> Tensor: """Convenience method that wraps inverse fft. :param torch.Tensor y: input measurements of shape (B,2,...) of real dtype :param bool three_d: whether MRI data is 3D or not, defaults to False :return: Tensor: output image of shape (B,2,...) of real dtype """ return self.from_torch_complex( self.ifft( self.to_torch_complex(y), dim=(-3, -2, -1) if three_d else (-2, -1) ) )
[docs] def crop(self, x: Tensor, crop: bool = True) -> Tensor: """Center crop 2D image according to ``img_size``. This matches the RSS reconstructions of the original raw data in :class:`deepinv.datasets.FastMRISliceDataset`. If ``img_size`` has odd height, then adjust by one pixel to match FastMRI data. :param torch.Tensor x: input tensor of shape (...,H,W) :param bool crop: whether to perform crop, defaults to True """ crop_size = self.img_size[-2:] odd_h = crop_size[0] % 2 == 1 if odd_h: crop_size = (crop_size[0] + 1, crop_size[1]) cropped = CenterCrop(crop_size)(x) if odd_h: cropped = cropped[..., :-1, :] return cropped if crop else x
[docs] @staticmethod def rss(x: Tensor, multicoil: bool = True, three_d: bool = False) -> Tensor: """Perform root-sum-square reconstruction on multicoil data, defined as .. math:: \operatorname{RSS}(x) = \sqrt{\sum_{n=1}^N |x_n|^2} where :math:`x_n` are the coil images of :math:`x`, :math:`|\cdot|` denotes the magnitude and :math:`N` is the number of coils. Note that the sum is performed voxel-wise. :param torch.Tensor x: input image of shape (B,2,...) where 2 represents real and imaginary channels :param bool multicoil: if ``True``, assume ``x`` is of shape (B,2,N,...), and reduce over coil dimension N too. """ assert ( x.shape[1] == 2 and not x.is_complex() ), "x should be of shape (B,2,...) and not of complex dtype." mc_dim = 1 if multicoil else 0 th_dim = 1 if three_d else 0 assert ( len(x.shape) == 4 + mc_dim + th_dim ), "x should be of shape (B,2,...) for singlecoil data or (B,2,N,...) for multicoil data." ss = x.pow(2).sum(dim=1, keepdim=True) return ss.sum(dim=2).sqrt() if multicoil else ss.sqrt()
[docs] class MRI(MRIMixin, DecomposablePhysics): r""" Single-coil accelerated 2D or 3D magnetic resonance imaging. The linear operator operates in 2D slices or 3D volumes and is defined as .. math:: y = MFx where :math:`M` applies a mask (subsampling operator), and :math:`F` is the 2D or 3D discrete Fourier Transform. This operator has a simple singular value decomposition, so it inherits the structure of :class:`deepinv.physics.DecomposablePhysics` and thus have a fast pseudo-inverse and prox operators. The complex images :math:`x` and measurements :math:`y` should be of size (B, C,..., H, W) with C=2, where the first channel corresponds to the real part and the second channel corresponds to the imaginary part. The ``...`` is an optional depth dimension for 3D MRI data. A fixed mask can be set at initialisation, or a new mask can be set either at forward (using ``physics(x, mask=mask)``) or using ``update``. .. note:: We provide various random mask generators (e.g. Cartesian undersampling) that can be used directly with this physics. See e.g. :class:`deepinv.physics.generator.mri.RandomMaskGenerator` If mask is not passed, a mask full of ones is used (i.e. no acceleration). .. note:: This physics is directly compatible with FastMRI data using :class:`deepinv.datasets.FastMRISliceDataset`. The dataset loads pairs of magnitude images and kspace ``(x, y)`` where ``x = MRI().A_adjoint(y, mag=True, crop=True)``. :param torch.Tensor mask: binary mask, where 1s represent sampling locations, and 0s otherwise. The mask size can either be (H,W), (C,H,W), (B,C,H,W), (B,C,...,H,W) where H, W are the image height and width, C is channels (which should be 2) and B is batch size. :param tuple img_size: if mask not specified, flat mask of ones is created using ``img_size``, where ``img_size`` can be of any shape specified above. If mask provided, ``img_size`` is ignored. :param bool three_d: if ``True``, calculate Fourier transform in 3D for 3D data (i.e. data of shape (B,C,D,H,W) where D is depth). :param torch.device device: cpu or gpu. |sep| :Examples: Single-coil accelerated MRI operator with subsampling mask: >>> from deepinv.physics import MRI >>> seed = torch.manual_seed(0) # Random seed for reproducibility >>> x = torch.randn(1, 2, 2, 2) # Define random 2x2 image >>> mask = 1 - torch.eye(2) # Define subsampling mask >>> physics = MRI(mask=mask) # Define mask at initialisation >>> physics(x) tensor([[[[ 0.0000, -1.4290], [ 0.4564, -0.0000]], <BLANKLINE> [[ 0.0000, 1.8622], [ 0.0603, -0.0000]]]]) >>> physics = MRI(img_size=x.shape) # No subsampling >>> physics(x) tensor([[[[ 2.2908, -1.4290], [ 0.4564, -0.1814]], <BLANKLINE> [[ 0.3744, 1.8622], [ 0.0603, -0.6209]]]]) >>> physics.update(mask=mask) # Update mask on the fly >>> physics(x) tensor([[[[ 0.0000, -1.4290], [ 0.4564, -0.0000]], <BLANKLINE> [[ 0.0000, 1.8622], [ 0.0603, -0.0000]]]]) """ def __init__( self, mask: Optional[Tensor] = None, img_size: Optional[tuple] = (320, 320), three_d: bool = False, device="cpu", **kwargs, ): super().__init__(**kwargs) self.device = device self.three_d = three_d self.img_size = img_size if mask is None: mask = torch.ones(*img_size, device=device) # Check and update mask self.update_parameters(mask=mask.to(self.device))
[docs] def V_adjoint(self, x: Tensor) -> Tensor: return self.im_to_kspace(x, three_d=self.three_d)
[docs] def V(self, x: Tensor) -> Tensor: return self.kspace_to_im(x, three_d=self.three_d)
[docs] def A_adjoint( self, y: Tensor, mask: Tensor = None, mag: bool = False, crop: bool = False, **kwargs, ): """Adjoint operator. Optionally perform crop and magnitude to match FastMRI data. By default, crop and magnitude are not performed. By setting ``mag=crop=True``, the outputs will be consistent with :class:`deepinv.datasets.FastMRISliceDataset`. :param torch.Tensor y: input kspace of shape (B,C,...,H,W) :param torch.Tensor mask: optionally set mask on-the-fly. :param bool mag: perform complex magnitude. This option is provided to match the original data of :class:`deepinv.datasets.FastMRISliceDataset`, such that ``x = MRI().A_adjoint(y, mag=True)``. :param bool crop: if ``True``, crop last 2 dims of x to last 2 dims of img_size. This option is provided to match the original data of :class:`deepinv.datasets.FastMRISliceDataset`, such that ``x = MRI().A_adjoint(y, crop=True)``. """ x = super().A_adjoint(y, mask, **kwargs) if mag: x = self.rss(x, multicoil=False) if crop: x = self.crop(x, crop=crop) return x # (B,C,...,H,W) where C=1 if mag else 2
[docs] def update_parameters(self, mask: Tensor = None, check_mask: bool = True, **kwargs): """Update MRI subsampling mask. :param torch.nn.parameter.Parameter, torch.Tensor mask: MRI mask :param bool check_mask: check mask dimensions before updating """ if mask is not None: self.mask = torch.nn.Parameter( ( self.check_mask( mask=mask, three_d=getattr(self, "three_d", False), device=self.device, ) if check_mask else mask ), requires_grad=False, )
[docs] class MultiCoilMRI(MRIMixin, LinearPhysics): r""" Multi-coil 2D or 3D MRI operator. The linear operator operates in 2D slices or 3D volumes and is defined as: .. math:: y_n = \text{diag}(p) F \text{diag}(s_n) x for :math:`n=1,\dots,N` coils, where :math:`y_n` are the measurements from the cth coil, :math:`\text{diag}(p)` is the acceleration mask, :math:`F` is the Fourier transform and :math:`\text{diag}(s_n)` is the nth coil sensitivity. The data ``x`` should be of shape (B,C,H,W) or (B,C,D,H,W) where C=2 is the channels (real and imaginary) and D is optional dimension for 3D MRI. Then, the resulting measurements ``y`` will be of shape (B,C,N,(D,)H,W) where N is the coils dimension. .. note:: We provide various random mask generators (e.g. Cartesian undersampling) that can be used directly with this physics. See e.g. :class:`deepinv.physics.generator.mri.RandomMaskGenerator`. If mask or coil maps are not passed, a mask and maps full of ones is used (i.e. no acceleration). .. note:: You can also simulate basic `birdcage coil sensitivity maps <https://mriquestions.com/birdcage-coil.html>` by passing instead an integer to ``coil_maps`` using ``MultiCoilMRI(coil_maps=N, img_size=x.shape)`` (note this requires installing the ``sigpy`` library). .. note:: This physics is directly compatible with FastMRI data using :class:`deepinv.datasets.FastMRISliceDataset`. The dataset loads pairs of RSS images and multicoil kspace ``(x, y)`` where ``x = MultiCoilMRI().A_adjoint(y, rss=True, crop=True)``. :param torch.Tensor mask: binary sampling mask which should have shape (H,W), (C,H,W), (B,C,H,W), or (B,C,...,H,W). If None, generate mask of ones with ``img_size``. :param torch.Tensor, str coil_maps: either ``Tensor``, integer, or ``None``. If complex valued (i.e. of complex dtype) coil sensitvity maps which should have shape (H,W), (N,H,W), (B,N,H,W) or (B,N,...,H,W). If None, generate flat coil maps of ones with ``img_size``. If integer, simulate birdcage coil maps with integer number of coils (this requires ``sigpy`` installed). :param tuple img_size: if ``mask`` or ``coil_maps`` not specified, flat ``mask`` or ``coil_maps`` of ones are created using ``img_size``, where ``img_size`` can be of any shape specified above. If ``mask`` or ``coil_maps`` provided, ``img_size`` is ignored. :param bool three_d: if ``True``, calculate Fourier transform in 3D for 3D data (i.e. data of shape (B,C,D,H,W) where D is depth). :param torch.device, str device: specify which device you want to use (i.e, cpu or gpu). |sep| :Examples: Multi-coil MRI operator: >>> from deepinv.physics import MultiCoilMRI >>> seed = torch.manual_seed(0) # Random seed for reproducibility >>> x = torch.randn(1, 2, 2, 2) # Define random 2x2 image B,C,H,W >>> physics = MultiCoilMRI(img_size=x.shape) # Define coil map of ones >>> physics(x).shape # B,C,N,H,W torch.Size([1, 2, 1, 2, 2]) >>> coil_maps = torch.randn(1, 5, 2, 2, dtype=torch.complex64) # Define 5-coil sensitivity maps >>> physics.update(coil_maps=coil_maps) # Update coil maps on the fly >>> physics(x).shape torch.Size([1, 2, 5, 2, 2]) """ def __init__( self, mask: Optional[Tensor] = None, coil_maps: Optional[Union[Tensor, int]] = None, img_size: Optional[tuple] = (320, 320), three_d: bool = False, device=torch.device("cpu"), **kwargs, ): super().__init__(**kwargs) self.img_size = img_size self.device = device self.three_d = three_d if mask is None: mask = torch.ones(*img_size) if coil_maps is None: coil_maps = torch.ones( (self.img_size[-2:] if not self.three_d else self.img_size[-3:]), dtype=torch.complex64, ) elif isinstance(coil_maps, int): coil_maps = self.simulate_birdcage_csm(n_coils=coil_maps) self.update_parameters(mask=mask.to(device), coil_maps=coil_maps.to(device))
[docs] def A(self, x, mask=None, coil_maps=None, **kwargs): r""" Applies linear operator. Optionally update MRI mask or coil sensitivity maps on the fly. :param torch.Tensor x: image with shape `(B,2,...,H,W)`. :param torch.Tensor mask: optionally set the mask on-the-fly. :param torch.Tensor coil_maps: optionally set the mask on-the-fly. :returns: (:class:`torch.Tensor`) multi-coil kspace measurements with shape `(B,2,N,...,H,W)` where `N` is coil dimension. """ self.update_parameters(mask=mask, coil_maps=coil_maps, **kwargs) Sx = self.coil_maps * self.to_torch_complex(x)[:, None] # [B,N,...,H,W] FSx = self.fft(Sx, dim=(-3, -2, -1) if self.three_d else (-2, -1)) MFSx = self.mask[:, :, None] * self.from_torch_complex(FSx) # [B,2,N,...,H,W] return MFSx
[docs] def A_adjoint( self, y, mask=None, coil_maps=None, rss: bool = False, crop: bool = False, **kwargs, ): r""" Applies adjoint linear operator. Optionally update MRI mask or coil sensitivity maps on the fly. :param torch.Tensor y: multi-coil kspace measurements with shape [B,2,N,...,H,W] where N is coil dimension. :param torch.Tensor mask: optionally set the mask on-the-fly. :param torch.Tensor coil_maps: optionally set the mask on-the-fly. :param bool rss: perform root-sum-square reconstruction. This option is provided to match the original data of :class:`deepinv.datasets.FastMRISliceDataset`, such that ``x = MultiCoilMRI().A_adjoint(y, rss=True)``. :param bool crop: if ``True``, crop last 2 dims of x to last 2 dims of img_size. This option is provided to match the original data of :class:`deepinv.datasets.FastMRISliceDataset`, such that ``x = MultiCoilMRI().A_adjoint(y, crop=True)``. :returns: (:class:`torch.Tensor`) image with shape `(B,2,...,H,W)` if not rss else `(B,1,...,H,W)` """ assert y.shape[1] == 2, "y must be of shape (B,2,N,...,H,W)" self.update_parameters(mask=mask, coil_maps=coil_maps, **kwargs) My = self.to_torch_complex(self.mask[:, :, None] * y) # [B,N,...,H,W] FiMy = self.ifft(My, dim=(-3, -2, -1) if self.three_d else (-2, -1)) if rss: x = self.from_torch_complex(FiMy) x = self.rss(x, multicoil=True) # [B,1,...,H,W] else: SiFiMy = torch.sum(torch.conj(self.coil_maps) * FiMy, dim=1) # [B,...,H,W] x = self.from_torch_complex(SiFiMy) # [B,2,...,H,W] return self.crop(x, crop=crop)
[docs] def update_parameters( self, mask: Tensor = None, coil_maps: Tensor = None, check_mask: bool = True, **kwargs, ): """Update MRI subsampling mask and coil sensitivity maps. :param torch.nn.parameter.Parameter, torch.Tensor mask: MRI mask :param torch.nn.parameter.Parameter, torch.Tensor coil_maps: MRI coil sensitivity maps :param bool check_mask: check mask dimensions before updating """ if mask is not None: self.mask = torch.nn.Parameter( ( self.check_mask(mask=mask, three_d=self.three_d, device=self.device) if check_mask else mask ), requires_grad=False, ) if coil_maps is not None: while len(coil_maps.shape) < ( 4 if not self.three_d else 5 ): # to B,N,H,W or B,N,D,H,W coil_maps = coil_maps.unsqueeze(0) if not coil_maps.is_complex(): raise ValueError("coil_maps should be of torch complex dtype.") self.coil_maps = torch.nn.Parameter( coil_maps.to(self.device), requires_grad=False )
[docs] def simulate_birdcage_csm(self, n_coils: int): """Simulate birdcage coil sensitivity maps. Requires library ``sigpy``. :param int n_coils: number of coils N :return torch.Tensor: coil maps of complex dtype of shape (N,H,W) """ try: from sigpy.mri import birdcage_maps except ImportError: raise ImportError( "sigpy is required to simulate coil maps. Install it using pip install sigpy" ) coil_maps = birdcage_maps( (n_coils,) + (self.img_size[-2:] if not self.three_d else self.img_size[-3:]) ) return torch.tensor(coil_maps).type(torch.complex64)
[docs] class DynamicMRI(MRI, TimeMixin): r""" Single-coil accelerated dynamic magnetic resonance imaging. The linear operator operates in 2D+t videos and is defined as .. math:: y_t = M_t Fx_t where :math:`M_t` applies a time-varying mask, and :math:`F` is the 2D discrete Fourier Transform. This operator has a simple singular value decomposition, so it inherits the structure of :class:`deepinv.physics.DecomposablePhysics` and thus have a fast pseudo-inverse and prox operators. The complex images :math:`x` and measurements :math:`y` should be of size (B, 2, T, H, W) where the first channel corresponds to the real part and the second channel corresponds to the imaginary part. A fixed mask can be set at initialisation, or a new mask can be set either at forward (using ``physics(x, mask=mask)``) or using ``update``. .. note:: We provide various random mask generators (e.g. Cartesian undersampling) that can be used directly with this physics. See e.g. :class:`deepinv.physics.generator.mri.RandomMaskGenerator` :param torch.Tensor mask: binary mask, where 1s represent sampling locations, and 0s otherwise. The mask size can either be (H,W), (T,H,W), (C,T,H,W) or (B,C,T,H,W) where H, W are the image height and width, T is time-steps, C is channels (typically 2) and B is batch size. :param tuple img_size: if mask not specified, flat mask of ones is created using ``img_size``, where ``img_size`` can be of any shape specified above. If mask provided, ``img_size`` is ignored. :param torch.device device: cpu or gpu. |sep| :Examples: Single-coil accelerated 2D+t MRI operator: >>> from deepinv.physics import DynamicMRI >>> seed = torch.manual_seed(0) # Random seed for reproducibility >>> x = torch.randn(1, 2, 2, 2, 2) # Define random video of shape (B,C,T,H,W) >>> mask = torch.rand_like(x) > 0.75 # Define random 4x subsampling mask >>> physics = DynamicMRI(mask=mask) # Physics with given mask >>> physics.update(mask=mask) # Alternatively set mask on-the-fly >>> physics(x) tensor([[[[[-0.0000, 0.7969], [-0.0000, -0.0000]], <BLANKLINE> [[-0.0000, -1.9860], [-0.0000, -0.4453]]], <BLANKLINE> <BLANKLINE> [[[ 0.0000, 0.0000], [-0.8137, -0.0000]], <BLANKLINE> [[-0.0000, -0.0000], [-0.0000, 1.1135]]]]]) """
[docs] def A(self, x: Tensor, mask: Tensor = None, **kwargs) -> torch.Tensor: mask = self.check_mask(self.mask if mask is None else mask) mask_flatten = self.flatten(mask.expand(*x.shape)).to(x.device) y = self.unflatten( super().A(self.flatten(x), mask_flatten, check_mask=False), batch_size=x.shape[0], ) self.update_parameters(mask=mask, **kwargs) return y
[docs] def A_adjoint( self, y: Tensor, mask: Tensor = None, mag: bool = False, **kwargs ) -> Tensor: """Adjoint operator. Optionally perform magnitude to reduce channel dimension. :param torch.Tensor y: input kspace of shape `(B,2,T,H,W)` :param torch.Tensor mask: optionally set mask on-the-fly, see class docs for shapes allowed. :param bool mag: perform complex magnitude. """ mask = self.check_mask(self.mask if mask is None else mask) mask_flatten = self.flatten(mask.expand(*y.shape)).to(y.device) x = self.unflatten( super().A_adjoint( self.flatten(y), mask=mask_flatten, check_mask=False, mag=mag ), batch_size=y.shape[0], ) self.update_parameters(mask=mask, **kwargs) return x
[docs] def A_dagger(self, y: Tensor, mask: Tensor = None, **kwargs) -> torch.Tensor: return self.A_adjoint(y, mask=mask, **kwargs)
[docs] def check_mask(self, mask: torch.Tensor = None, **kwargs) -> None: r""" Updates MRI mask and verifies mask shape to be B,C,T,H,W. :param torch.nn.parameter.Parameter, float MRI subsampling mask. """ while mask is not None and len(mask.shape) < 5: # to B,C,T,H,W mask = mask.unsqueeze(0) return super().check_mask(mask=mask, device=self.device, three_d=self.three_d)
[docs] def noise(self, x, **kwargs): r""" Incorporates noise into the measurements :math:`\tilde{y} = N(y)` :param torch.Tensor x: clean measurements :return torch.Tensor: noisy measurements """ return self.noise_model(x, **kwargs) * self.mask
[docs] def to_static(self, mask: Optional[torch.Tensor] = None) -> MRI: """Convert dynamic MRI to static MRI by removing time dimension. :param torch.Tensor mask: new static MRI mask. If None, existing mask is flattened (summed) along the time dimension. :return MRI: static MRI physics """ return MRI( mask=torch.clip(self.mask.sum(2), 0.0, 1.0) if mask is None else mask, img_size=self.img_size, device=self.device, )
[docs] class SequentialMRI(DynamicMRI): r""" Single-coil accelerated magnetic resonance imaging using sequential sampling. Let :math:`M` be a subsampling mask with given acceleration. :math:`M_t` is a time-varying mask with the sequential sampling pattern e.g. non-overlapping lines or spokes, such that :math:`S=\bigcup_t S_t`. The sequential MRI operator then simulates a time sequence of k-space samples: .. math:: y_t = M_t F x where :math:`F` is the 2D discrete Fourier Transform, the image :math:`x` is of shape (B, 2, H, W) and measurements :math:`y` is of shape (B, 2, T, H, W) where the first channel corresponds to the real part and the second channel corresponds to the imaginary part. This operator has a simple singular value decomposition, so it inherits the structure of :class:`deepinv.physics.DecomposablePhysics` and thus have a fast pseudo-inverse and prox operators. A fixed mask can be set at initialisation, or a new mask can be set either at forward (using ``physics(x, mask=mask)``) or using ``update``. .. note:: We provide various random mask generators (e.g. Cartesian undersampling) that can be used directly with this physics. See e.g. :class:`deepinv.physics.generator.mri.RandomMaskGenerator` :param torch.Tensor mask: binary mask :math:`S_t,t=1\ldots T`, where 1s represent sampling locations, and 0s otherwise. The mask size can either be (H,W), (T,H,W), (C,T,H,W) or (B,C,T,H,W) where H, W are the image height and width, T is time-steps, C is channels (typically 2) and B is batch size. :param tuple img_size: if mask not specified, flat mask of ones is created using ``img_size``, where ``img_size`` can be of any shape specified above. If mask provided, ``img_size`` is ignored. :param torch.device device: cpu or gpu. |sep| :Examples: Single-coil accelerated sequential MRI operator: >>> from deepinv.physics import SequentialMRI >>> x = torch.randn(1, 2, 2, 2) # Define random image of shape (B,C,H,W) >>> mask = torch.zeros(1, 2, 3, 2, 2) # Empty demo time-varying mask with 3 frames >>> physics = SequentialMRI(mask=mask) # Physics with given mask >>> physics.update(mask=mask) # Alternatively set mask on-the-fly >>> physics(x).shape # MRI sequential samples torch.Size([1, 2, 3, 2, 2]) """
[docs] def A(self, x: Tensor, mask: Tensor = None, **kwargs) -> torch.Tensor: return super().A( self.repeat(x, self.mask if mask is None else mask), mask, **kwargs )
[docs] def A_adjoint( self, y: Tensor, mask: Tensor = None, keep_time_dim=False, **kwargs ) -> torch.Tensor: r""" Computes the adjoint of the forward operator :math:`\tilde{x} = A^{\top}y`. :param torch.Tensor y: input tensor :param torch.nn.parameter.Parameter, float mask: input mask :param bool keep_time_dim: if ``True``, adjoint is calculated frame-by-frame. Used for visualisation. If ``False``, flatten the time dimension before calculating. :return: (:class:`torch.Tensor`) output tensor """ if keep_time_dim: return super().A_adjoint(y, mask, **kwargs) else: mask = mask if mask is not None else self.mask return self.to_static().A_adjoint( self.average(y, mask), mask=self.average(mask), **kwargs )