:html_theme.sidebar_secondary.remove:
DeepInverse: a Python library for imaging with deep learning
=============================================================
|Test Status| |GPU Test Status| |Docs Status| |GPU Docs Status| |Python Version| |Black| |codecov| |pip install| |discord| |colab| |youtube| |paper|
.. toctree::
:maxdepth: 3
:hidden:
quickstart
auto_examples/index
user_guide
API
finding_help
contributing
community
changelog
DeepInverse is an open-source PyTorch-based library for solving imaging inverse problems with deep learning. ``deepinv`` accelerates deep learning research across imaging domains, enhances research reproducibility via a common modular framework of problems and algorithms, and lowers the entrance bar to new practitioners.
GitHub: ``_
.. image:: figures/deepinv_schematic.png
:width: 1000px
:alt: deepinv schematic
:align: center
Get started
-----------
Check out our `5 minute quickstart tutorial `_, our `comprehensive examples `_, or our :ref:`User Guide `.
``deepinv`` features
* A large framework of :ref:`predefined imaging operators `
* Many :ref:`state-of-the-art deep neural networks `, including pretrained out-of-the-box :ref:`reconstruction models ` and :ref:`denoisers `
* Comprehensive frameworks for :ref:`plug-and-play restoration `, :ref:`optimization ` and :ref:`unfolded architectures `
* :ref:`Training losses ` for inverse problems
* :ref:`Sampling algorithms and diffusion models ` for uncertainty quantification
* A framework for :ref:`building datasets ` for inverse problems
Mailing list
~~~~~~~~~~~~
Join our **mailing list** for occasional updates on releases and new features:
.. raw:: html
Install
-------
Install the latest stable release of ``deepinv``:
.. code-block:: bash
pip install deepinv
Or, use `uv` for a faster install:
.. code-block:: bash
uv pip install deepinv
Or, to also install optional dependencies:
.. code-block:: bash
pip install deepinv[dataset,denoisers]
Since ``deepinv`` is under active development, you can install the latest nightly version using:
.. code-block:: bash
pip install git+https://github.com/deepinv/deepinv.git#egg=deepinv
Or, for updating an existing installation:
.. code-block:: bash
pip install --upgrade --force-reinstall --no-deps git+https://github.com/deepinv/deepinv.git#egg=deepinv
Finding help
------------
If you have any questions or suggestions, please join the conversation in our
`Discord server `_. The recommended way to get in touch with the developers about any bugs or issues is to
`open an issue `_.
Maintainers
~~~~~~~~~~~
Get in touch with our `MAINTAINERS `_.
Contributing
------------
DeepInverse is a :ref:`community-driven project ` and we encourage contributions of all forms.
We are building a comprehensive library of inverse problems and deep learning,
and we need your help to get there!
Interested? :ref:`Check out how you can contribute `!
Citation
--------
If you use DeepInverse in your research, please cite `our paper on JOSS `_:
.. code-block:: bash
@article{tachella2025deepinverse,
title = {DeepInverse: A Python package for solving imaging inverse problems with deep learning},
journal = {Journal of Open Source Software},
doi = {10.21105/joss.08923},
url = {https://doi.org/10.21105/joss.08923},
year = {2025},
publisher = {The Open Journal},
volume = {10},
number = {115},
pages = {8923},
author = {Tachella, Julián and Terris, Matthieu and Hurault, Samuel and Wang, Andrew and Davy, Leo and Scanvic, Jérémy and Sechaud, Victor and Vo, Romain and Moreau, Thomas and Davies, Thomas and Chen, Dongdong and Laurent, Nils and Monroy, Brayan and Dong, Jonathan and Hu, Zhiyuan and Nguyen, Minh-Hai and Sarron, Florian and Weiss, Pierre and Escande, Paul and Massias, Mathurin and Modrzyk, Thibaut and Levac, Brett and Liaudat, Tobías I. and Song, Maxime and Hertrich, Johannes and Neumayer, Sebastian and Schramm, Georg},
}
Star history
------------
.. image:: https://api.star-history.com/svg?repos=deepinv/deepinv&type=Date
:alt: Star History Chart
:target: https://www.star-history.com/#deepinv/deepinv&Date
Keywords: image processing, image reconstruction, imaging, computational imaging, inverse problems, deep learning,
mri, superresolution, computed tomography, plug-and-play, deblurring, diffusion models,
unfolded, deep equilibrium models
.. |Black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black
.. |Test Status| image:: https://github.com/deepinv/deepinv/actions/workflows/test_recurrent_main.yml/badge.svg
:target: https://github.com/deepinv/deepinv/actions/workflows/test_recurrent_main.yml
.. |GPU Test Status| image:: https://github.com/deepinv/deepinv/actions/workflows/test_gpu.yml/badge.svg?branch=main&event=push
:target: https://github.com/deepinv/deepinv/actions/workflows/test_gpu.yml
.. |Docs Status| image:: https://github.com/deepinv/deepinv/actions/workflows/documentation.yml/badge.svg
:target: https://github.com/deepinv/deepinv/actions/workflows/documentation.yml
.. |GPU Docs Status| image:: https://github.com/deepinv/deepinv/actions/workflows/gpu_docs.yml/badge.svg?branch=main&event=push
:target: https://github.com/deepinv/deepinv/actions/workflows/gpu_docs.yml
.. |Python Version| image:: https://img.shields.io/badge/python-3.10%2B-blue
:target: https://www.python.org/downloads/release/python-3100/
.. |codecov| image:: https://codecov.io/gh/deepinv/deepinv/branch/main/graph/badge.svg?token=77JRvUhQzh
:target: https://codecov.io/gh/deepinv/deepinv
.. |pip install| image:: https://img.shields.io/pypi/dm/deepinv.svg?logo=pypi&label=pip%20install&color=fedcba
:target: https://pypistats.org/packages/deepinv
.. |discord| image:: https://dcbadge.limes.pink/api/server/qBqY5jKw3p?style=flat
:target: https://discord.gg/qBqY5jKw3p
.. |colab| image:: https://colab.research.google.com/assets/colab-badge.svg
:target: https://colab.research.google.com/github/deepinv/deepinv/blob/gh-pages/auto_examples/_notebooks/basics/demo_quickstart.ipynb
.. |youtube| image:: https://img.shields.io/badge/YouTube-deepinv-red?logo=youtube
:target: https://www.youtube.com/@deepinv
.. |paper| image:: https://joss.theoj.org/papers/10.21105/joss.08923/status.svg
:target: https://doi.org/10.21105/joss.08923