.. _blind: Blind Inverse Problems ====================== Following the :ref:`notation of the library `, here we consider measurements of the form :math:`y = \noise{\forw{x, \theta}}`, where :math:`\theta` represents unknown physics parameters. Noise parameters associated to :math:`\noise{\cdot}` may also be unknown. In this section, we consider two classes of problems: - **Calibration problems**: Estimate the unknown parameters :math:`\theta` given paired signal and measurement data :math:`(x,y)` - **Blind inverse problems**: Jointly estimate the signal :math:`x` and :math:`\theta` parameters (and other noise parameters) from the measurements :math:`y`. Some methods directly estimate the signal without explicitly estimating the parameters. Calibration problems ~~~~~~~~~~~~~~~~~~~~ If paired measurement and signal data is available at inference time, physics parameters can be estimated using optimization methods. See the example :ref:`sphx_glr_auto_examples_blind-inverse-problems_demo_optimizing_physics_parameter.py` for more details. Physics parameters estimation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If only measurement data is available :math:`\theta` at inference time, we can estimate the parameters from the observed data, and then use any non-blind reconstructor to recover the image. The library provides the following parameter estimation models/algorithms: .. list-table:: Identification models :widths: 15 15 15 15 15 15 :header-rows: 1 * - Model/Algorithm - Tensor Size (C, H, W) - Pretrained Weights - Physics - Parameters estimated - Examples * - :class:`KernelIdentificationNetwork ` - C=3; H,W>8 - RGB - :class:`SpaceVaryingBlur ` - `filters`, `multipliers` - :ref:`blind deblurring `. * - :class:`ESPIRiT ` - C=2; H,W>64 - (non-learned) - :class:`MultiCoilMRI ` - `coil_maps` - :ref:`MRI coil map estimation `.