Source code for deepinv.physics.haze

import torch
from deepinv.physics.forward import Physics
from deepinv.utils.tensorlist import TensorList


[docs] class Haze(Physics): r""" Standard haze model The operator is defined as https://ieeexplore.ieee.org/abstract/document/5567108/ .. math:: y = t \odot I + a (1-t) where :math:`t = \exp(-\beta d - o)` is the medium transmission, :math:`I` is the intensity (possibly RGB) image, :math:`\odot` denotes element-wise multiplication, :math:`a>0` is the atmospheric light, :math:`d` is the scene depth, and :math:`\beta>0` and :math:`o` are constants. This is a non-linear inverse problems, whose unknown parameters are :math:`I`, :math:`d`, :math:`a`. :param float beta: constant :math:`\beta>0` :param float offset: constant :math:`o` """ def __init__(self, beta=0.1, offset=0, **kwargs): super().__init__(**kwargs) self.beta = beta self.offset = offset
[docs] def A(self, x, **kwargs): r""" :param list, tuple x: The input x should be a tuple/list such that x[0] = image torch.tensor :math:`I`, x[1] = depth torch.tensor :math:`d`, x[2] = scalar or torch.tensor of one element :math:`a`. :return: (torch.tensor) hazy image. """ im = x[0] d = x[1] A = x[2] t = torch.exp(-self.beta * (d + self.offset)) y = t * im + (1 - t) * A return y
[docs] def A_dagger(self, y, **kwargs): r""" Returns the trivial inverse where x[0] = y (trivial estimate of the image :math:`I`), x[1] = tensor of depth :math:`d` equal to one, x[2] = 1 for :math:`a`. .. note: This trivial inverse can be useful for some reconstruction networks, such as ``deepinv.models.ArtifactRemoval``. :param torch.Tensor y: Hazy image. :return: (deepinv.utils.ListTensor) trivial inverse. """ b, c, h, w = y.shape d = torch.ones((b, 1, h, w), device=y.device) A = torch.ones(1, device=y.device) return TensorList([y, d, A])