PGDIteration
- class deepinv.optim.optim_iterators.PGDIteration(**kwargs)[source]
Bases:
OptimIterator
Iterator for proximal gradient descent.
Class for a single iteration of the Proximal Gradient Descent (PGD) algorithm for minimizing \(f(x) + \lambda g(x)\).
The iteration is given by
\[\begin{split}\begin{equation*} \begin{aligned} u_{k} &= x_k - \gamma \nabla f(x_k) \\ x_{k+1} &= \operatorname{prox}_{\gamma \lambda g}(u_k), \end{aligned} \end{equation*}\end{split}\]where \(\gamma\) is a stepsize that should satisfy \(\gamma \leq 2/\operatorname{Lip}(\|\nabla f\|)\).
Examples using PGDIteration
:
Learned Iterative Soft-Thresholding Algorithm (LISTA) for compressed sensing
Learned Iterative Soft-Thresholding Algorithm (LISTA) for compressed sensing
Learned iterative custom prior
Learned iterative custom prior