Urban100HR
- class deepinv.datasets.Urban100HR(root: str, download: bool = False, transform: Callable | None = None)[source]
Bases:
Dataset
Dataset for Urban100.
The Urban100 dataset contains 100 images of urban scenes. It is commonly used as a test set to evaluate the performance of super-resolution models.
Raw data file structure:
self.root --- Urban100_HR --- img_001.png | | | -- img_100.png | -- Urban100_HR.tar.gz
This dataset wrapper gives access to the 100 high resolution images in the Urban100_HR folder. Raw dataset source : https://huggingface.co/datasets/eugenesiow/Urban100/resolve/main/data/Urban100_HR.tar.gz
- Parameters:
root (str) – Root directory of dataset. Directory path from where we load and save the dataset.
download (bool) – If
True
, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default at False.transform (callable, optional) – A function/transform that takes in a PIL image and returns a transformed version. E.g,
torchvision.transforms.RandomCrop
- Examples:
Instantiate dataset and download raw data from the Internet
>>> import shutil >>> from deepinv.datasets import Urban100HR >>> dataset = Urban100HR(root="Urban100", download=True) # download raw data at root and load dataset Dataset has been successfully downloaded. >>> print(dataset.check_dataset_exists()) # check that raw data has been downloaded correctly True >>> print(len(dataset)) # check that we have 100 images 100 >>> shutil.rmtree("Urban100") # remove raw data from disk
Examples using Urban100HR
:
Imaging inverse problems with adversarial networks
Image transformations for Equivariant Imaging