LogPoissonLikelihood

class deepinv.optim.LogPoissonLikelihood(N0=1024.0, mu=0.02)[source]

Bases: DataFidelity

Log-Poisson negative log-likelihood.

\[\datafid{z}{y} = N_0 (1^{\top} \exp(-\mu z)+ \mu \exp(-\mu y)^{\top}x)\]

Corresponds to LogPoissonNoise with the same arguments N0 and mu. There is no closed-form of prox_d known.

Parameters:
  • N0 (float) – average number of photons

  • mu (float) – normalization constant

d(x, y)[source]

Computes the data fidelity distance \(\distance{u}{y}\).

Parameters:
Returns:

(torch.Tensor) data fidelity \(\distance{u}{y}\).

Examples using LogPoissonLikelihood:

Patch priors for limited-angle computed tomography

Patch priors for limited-angle computed tomography