Datasets#

This subpackage can be used for generating reconstruction datasets from other base datasets (e.g. MNIST or CelebA).

Generating Datasets#

Generating a dataset associated with a certain forward operator is done via deepinv.datasets.generate_dataset() using a base PyTorch dataset (torch.utils.data.Dataset). Your base dataset can either be one of our predefined datasets (see Predefined Datasets), your own data (which you can load using torchvision.datasets.ImageFolder or a custom dataset), or other external datasets (e.g. in this case, torchvision MNIST).

For example, here we generate a compressed sensing MNIST dataset:

Note

We support all data types supported by h5py, including complex numbers.

import deepinv as dinv
from torchvision import datasets, transforms

# directory where the dataset will be saved.
save_dir = dinv.utils.demo.get_data_home() / 'MNIST'

# define base train dataset
transform_data = transforms.Compose([transforms.ToTensor()])
data_train = datasets.MNIST(root=save_dir, train=True,
                            transform=transform_data, download=True)
data_test = datasets.MNIST(root=save_dir, train=False, transform=transform_data)

# define forward operator
physics = dinv.physics.CompressedSensing(m=300, img_shape=(1, 28, 28))
physics.noise_model = dinv.physics.GaussianNoise(sigma=.05)

# generate paired dataset
generated_dataset_path = dinv.datasets.generate_dataset(train_dataset=data_train,
        test_dataset=data_test, physics=physics, save_dir=save_dir, verbose=False)

Similarly, we can generate a dataset from a local folder of images (other types of data can be loaded using the loader and is_valid_file arguments of torchvision.datasets.ImageFolder):

# Note that ImageFolder requires file structure to be '.../dir/train/xxx/yyy.ext'
# where xxx is an arbitrary class label
data_train = datasets.ImageFolder(f'{save_dir}/train', transform=transform_data)
data_test  = datasets.ImageFolder(f'{save_dir}/test',  transform=transform_data)

dinv.datasets.generate_dataset(train_dataset=data_train, test_dataset=data_test,
                               physics=physics, save_dir=save_dir)

The datasets are saved in .h5 (HDF5) format, and can be easily loaded to pytorch’s standard torch.utils.data.DataLoader:

from torch.utils.data import DataLoader

dataset = dinv.datasets.HDF5Dataset(path=generated_dataset_path, train=True)
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)

We can also use physics generators to randomly generate physics params for data, and save and load the physics params into the dataset:

physics_generator = dinv.physics.generator.SigmaGenerator()
path = dinv.datasets.generate_dataset(train_dataset=data_train, test_dataset=data_test,
                                      physics=physics, physics_generator=physics_generator,
                                      save_dir=save_dir)
dataset = dinv.datasets.HDF5Dataset(path=path, load_physics_generator_params=True, train=True)
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
x, y, params = next(iter(dataloader))
print(params['sigma'].shape)

Predefined Datasets#

Multiple popular easy-to-download datasets are available:

Table 17 Datasets Overview#

Dataset

Dataset Size

Tensor Sizes

Description

deepinv.datasets.DIV2K

800 (train) + 100 (val) images

RGB, up to 2040x2040 pixels (variable)

A widely-used dataset for natural image restoration.

deepinv.datasets.Urban100HR

100 images

up to 1200x1280 pixels (variable)

Contains diverse high-resolution urban scenes, typically used for testing super-resolution algorithms.

deepinv.datasets.Set14HR

14 high-resolution images

RGB, 248×248 to 512×768 pixels.

A small benchmark dataset for super-resolution tasks, containing a variety of natural images.

deepinv.datasets.CBSD68

68 images

RGB, 481x321 pixels

A subset of the Berkeley Segmentation Dataset.

deepinv.datasets.FastMRISliceDataset

Over 100,000 MRI slices

Complex numbers, 320x320 pixels

A large-scale dataset of MRI brain and knee scans for training and evaluating MRI reconstruction methods.

deepinv.datasets.LidcIdriSliceDataset

Over 200,000 CT scan slices

Slices 512x512 voxels

A comprehensive dataset of lung CT scans with annotations, used for medical image processing and lung cancer detection research.

deepinv.datasets.Flickr2kHR

2,650 images

RGB, up to 2000x2000 pixels (variable)

A dataset from Flickr containing high-resolution images for tasks like super-resolution and image restoration.

deepinv.datasets.LsdirHR

84499 (train) + 1000 (val) images

RGB, up to 2160x2160 pixels (variable)

A dataset with high-resolution images, often used for training large reconstruction models.

deepinv.datasets.FMD

12000 images

512x512 pixels

The Fluorescence Microscopy Dataset (FMD) is a dataset of real fluorescence microscopy images.

deepinv.datasets.Kohler

48 blurry + 9547 sharp images

800x800 RGB

A blind-deblurring dataset consists of blurry shots and sharp frames, each blurry shot being associated with about 200 sharp frames.

deepinv.datasets.NBUDataset

510 images across 6 satellites

Cx256x256 multispectral (C=4 or 8) and 1x1024x1024 panchromatic

Multispectral satellite images of urban scenes from 6 different satellites.