LsdirHR#
- class deepinv.datasets.LsdirHR(root, mode='train', download=False, transform=None)[source]#
Bases:
ImageFolderDataset for LSDIR.
Published in Li et al.[1].
A large-scale dataset for image restoration tasks such as image super-resolution (SR), image denoising, JPEG deblocking, deblurring, and demosaicking, and real-world SR.
Raw data file structure:
self.root --- 0001000 --- 0000001.png | | | -- 0001000.png | ... | -- 0085000 --- 0084001.png | | | -- 0084991.png | | -- val1 --- HR --- val --- 0000001.png | -- X2 | | -- X3 -- 0000250.png | -- X4
Warning
Downloading this dataset requires
huggingface-hub. It is gated, please request access (https://huggingface.co/ofsoundof/LSDIR) and make sure you are logged in usinghf auth login(CLI) orfrom huggingface_hub import login, login().- Parameters:
root (str) – Root directory of dataset. Directory path from where we load and save the dataset.
mode (str) – Select a split of the dataset between ‘train’ or ‘val’. Default at ‘train’.
download (bool) – If
True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default at False.transform: (Callable) – (optional) A function/transform that takes in a PIL image and returns a transformed version. E.g,
torchvision.transforms.RandomCrop
- Examples:
Instantiate dataset and download raw data from the Internet
from deepinv.datasets import LsdirHR val_dataset = LsdirHR(root="Lsdir", mode="val", download=True) # download raw data at root and load dataset print(val_dataset.verify_split_dataset_integrity()) # check that raw data has been downloaded correctly print(len(val_dataset)) # check that we have 250 images
- References:
- verify_split_dataset_integrity()[source]#
Verify the integrity and existence of the specified dataset split.
The expected structure of the dataset directory is as follows:
self.root --- 0001000 --- 0000001.png | | | -- 0001000.png | ... | -- 0085000 --- 0084001.png | | | -- 0084991.png | | -- val1 --- HR --- val --- 0000001.png | -- X2 | | -- X3 -- 0000250.png |