Operators & Noise#

Operators#

Operators describe the forward model \(z = A(x,\theta)\), where \(x\) is the input image and \(\theta\) are the parameters of the operator. The parameters \(\theta\) can be sampled using random generators, which are available for some specific classes.

Noise distributions#

Noise distributions describe the noise model \(N\), where \(y = N(z)\) with \(z=A(x)\). The noise models can be assigned to any operator in the list above, by setting the set_noise_model attribute at initialization.

Table 2 Noise Distributions and Their Probability Distributions#

Noise

\(y|z\)

deepinv.physics.GaussianNoise

\(y\sim \mathcal{N}(z, I\sigma^2)\)

deepinv.physics.PoissonNoise

\(y \sim \mathcal{P}(z/\gamma)\)

deepinv.physics.PoissonGaussianNoise

\(y = \gamma z + \epsilon\), \(z\sim\mathcal{P}(\frac{z}{\gamma})\), \(\epsilon\sim\mathcal{N}(0, I \sigma^2)\)

deepinv.physics.LogPoissonNoise

\(y = \frac{1}{\mu} \log(\frac{\mathcal{P}(\exp(-\mu z) N_0)}{N_0})\)

deepinv.physics.UniformNoise

\(y\sim \mathcal{U}(z-a, z+b)\)