Note
New to DeepInverse? Get started with the basics with the 5 minute quickstart tutorial..
Uncertainty quantification with PnP-ULA.#
This code shows you how to use sampling algorithms to quantify uncertainty of a reconstruction from incomplete and noisy measurements.
ULA obtains samples by running the following iteration:
where \(z_k \sim \mathcal{N}(0, I)\) is a Gaussian random variable, \(\eta\) is the step size and \(\alpha\) is a parameter controlling the regularization.
The PnP-ULA method is described in the paper Laumont et al.[1].
import deepinv as dinv
from deepinv.utils.plotting import plot
import torch
from deepinv.utils import load_example
Load image from the internet#
This example uses an image of Messi.
device = dinv.utils.get_freer_gpu() if torch.cuda.is_available() else "cpu"
x = load_example("messi.jpg", img_size=32).to(device)
Selected GPU 0 with 1952.125 MiB free memory
Define forward operator and noise model#
This example uses inpainting as the forward operator and Gaussian noise as the noise model.
sigma = 0.1 # noise level
physics = dinv.physics.Inpainting(mask=0.5, img_size=x.shape[1:], device=device)
physics.noise_model = dinv.physics.GaussianNoise(sigma=sigma)
# Set the global random seed from pytorch to ensure reproducibility of the example.
torch.manual_seed(0)
<torch._C.Generator object at 0x7fec5bb46ed0>
Define the likelihood#
Since the noise model is Gaussian, the negative log-likelihood is the L2 loss.
# load Gaussian Likelihood
likelihood = dinv.optim.data_fidelity.L2(sigma=sigma)
Define the prior#
The score a distribution can be approximated using Tweedieβs formula via the
deepinv.optim.ScorePrior class.
This example uses a pretrained DnCNN model.
From a Bayesian point of view, the score plays the role of the gradient of the
negative log prior
The hyperparameter sigma_denoiser (\(sigma\)) controls the strength of the prior.
In this example, we use a pretrained DnCNN model using the deepinv.loss.FNEJacobianSpectralNorm loss,
which makes sure that the denoiser is firmly non-expansive (see Terris et al.[2]), and helps to
stabilize the sampling algorithm.
sigma_denoiser = 2 / 255
prior = dinv.optim.ScorePrior(
denoiser=dinv.models.DnCNN(pretrained="download_lipschitz")
).to(device)
Create the MCMC sampler#
Here we use the Unadjusted Langevin Algorithm (ULA) to sample from the posterior defined in
deepinv.sampling.ULAIterator.
The hyperparameter step_size controls the step size of the MCMC sampler,
regularization controls the strength of the prior and
iterations controls the number of iterations of the sampler.
regularization = 0.9
step_size = 0.01 * (sigma**2)
iterations = int(5e3) if torch.cuda.is_available() else 10
params = {
"step_size": step_size,
"alpha": regularization,
"sigma": sigma_denoiser,
}
f = dinv.sampling.sampling_builder(
"ULA",
prior=prior,
data_fidelity=likelihood,
max_iter=iterations,
params_algo=params,
thinning=1,
verbose=True,
)
Generate the measurement#
We apply the forward model to generate the noisy measurement.
Run sampling algorithm and plot results#
The sampling algorithm returns the posterior mean and variance. We compare the posterior mean with a simple linear reconstruction.
mean, var = f.sample(y, physics)
# compute linear inverse
x_lin = physics.A_adjoint(y)
# compute PSNR
print(f"Linear reconstruction PSNR: {dinv.metric.PSNR()(x, x_lin).item():.2f} dB")
print(f"Posterior mean PSNR: {dinv.metric.PSNR()(x, mean).item():.2f} dB")
# plot results
error = (mean - x).abs().sum(dim=1).unsqueeze(1) # per pixel average abs. error
std = var.sum(dim=1).unsqueeze(1).sqrt() # per pixel average standard dev.
imgs = [x_lin, x, mean, std / std.flatten().max(), error / error.flatten().max()]
plot(
imgs,
titles=["measurement", "ground truth", "post. mean", "post. std", "abs. error"],
)

0%| | 0/5000 [00:00<?, ?it/s]
2%|β | 93/5000 [00:00<00:05, 926.69it/s]
4%|β | 195/5000 [00:00<00:04, 979.43it/s]
6%|β | 296/5000 [00:00<00:04, 992.89it/s]
8%|β | 399/5000 [00:00<00:04, 1007.23it/s]
10%|β | 502/5000 [00:00<00:04, 1015.22it/s]
12%|ββ | 604/5000 [00:00<00:04, 1012.45it/s]
14%|ββ | 707/5000 [00:00<00:04, 1018.06it/s]
16%|ββ | 810/5000 [00:00<00:04, 1021.79it/s]
18%|ββ | 913/5000 [00:00<00:03, 1023.31it/s]
20%|ββ | 1016/5000 [00:01<00:03, 1021.73it/s]
22%|βββ | 1119/5000 [00:01<00:03, 1007.11it/s]
24%|βββ | 1220/5000 [00:01<00:03, 997.31it/s]
26%|βββ | 1320/5000 [00:01<00:03, 990.47it/s]
28%|βββ | 1420/5000 [00:01<00:03, 985.78it/s]
30%|βββ | 1519/5000 [00:01<00:03, 982.84it/s]
32%|ββββ | 1618/5000 [00:01<00:03, 980.75it/s]
34%|ββββ | 1717/5000 [00:01<00:03, 976.67it/s]
36%|ββββ | 1815/5000 [00:01<00:03, 951.72it/s]
38%|ββββ | 1913/5000 [00:01<00:03, 957.66it/s]
40%|ββββ | 2009/5000 [00:02<00:03, 955.80it/s]
42%|βββββ | 2106/5000 [00:02<00:03, 958.46it/s]
44%|βββββ | 2202/5000 [00:02<00:02, 958.40it/s]
46%|βββββ | 2298/5000 [00:02<00:02, 958.24it/s]
48%|βββββ | 2396/5000 [00:02<00:02, 963.77it/s]
50%|βββββ | 2494/5000 [00:02<00:02, 968.01it/s]
52%|ββββββ | 2592/5000 [00:02<00:02, 970.39it/s]
54%|ββββββ | 2690/5000 [00:02<00:02, 971.65it/s]
56%|ββββββ | 2788/5000 [00:02<00:02, 972.95it/s]
58%|ββββββ | 2886/5000 [00:02<00:02, 973.47it/s]
60%|ββββββ | 2984/5000 [00:03<00:02, 973.98it/s]
62%|βββββββ | 3082/5000 [00:03<00:01, 974.57it/s]
64%|βββββββ | 3180/5000 [00:03<00:01, 975.03it/s]
66%|βββββββ | 3278/5000 [00:03<00:01, 975.31it/s]
68%|βββββββ | 3376/5000 [00:03<00:01, 975.53it/s]
69%|βββββββ | 3474/5000 [00:03<00:01, 975.72it/s]
71%|ββββββββ | 3572/5000 [00:03<00:01, 975.05it/s]
73%|ββββββββ | 3670/5000 [00:03<00:01, 974.97it/s]
75%|ββββββββ | 3768/5000 [00:03<00:01, 974.55it/s]
77%|ββββββββ | 3866/5000 [00:03<00:01, 973.39it/s]
79%|ββββββββ | 3964/5000 [00:04<00:01, 966.76it/s]
81%|ββββββββ | 4061/5000 [00:04<00:00, 964.16it/s]
83%|βββββββββ | 4158/5000 [00:04<00:00, 958.46it/s]
85%|βββββββββ | 4254/5000 [00:04<00:00, 957.58it/s]
87%|βββββββββ | 4352/5000 [00:04<00:00, 961.48it/s]
89%|βββββββββ | 4449/5000 [00:04<00:00, 953.74it/s]
91%|βββββββββ | 4546/5000 [00:04<00:00, 956.86it/s]
93%|ββββββββββ| 4642/5000 [00:04<00:00, 956.68it/s]
95%|ββββββββββ| 4739/5000 [00:04<00:00, 960.18it/s]
97%|ββββββββββ| 4837/5000 [00:04<00:00, 963.85it/s]
99%|ββββββββββ| 4934/5000 [00:05<00:00, 965.08it/s]
100%|ββββββββββ| 5000/5000 [00:05<00:00, 975.51it/s]
Iteration 4999, current converge crit. = 1.43E-05, objective = 1.00E-03
Iteration 4999, current converge crit. = 3.42E-04, objective = 1.00E-03
Linear reconstruction PSNR: 8.55 dB
Posterior mean PSNR: 22.31 dB
- References:
Total running time of the script: (0 minutes 5.468 seconds)