Note
New to DeepInverse? Get started with the basics with the 5 minute quickstart tutorial..
Uncertainty quantification with PnP-ULA.#
This code shows you how to use sampling algorithms to quantify uncertainty of a reconstruction from incomplete and noisy measurements.
ULA obtains samples by running the following iteration:
where \(z_k \sim \mathcal{N}(0, I)\) is a Gaussian random variable, \(\eta\) is the step size and \(\alpha\) is a parameter controlling the regularization.
The PnP-ULA method is described in the paper Laumont et al.[1].
import deepinv as dinv
from deepinv.utils.plotting import plot
import torch
from deepinv.utils import load_example
Load image from the internet#
This example uses an image of Messi.
device = dinv.utils.get_freer_gpu() if torch.cuda.is_available() else "cpu"
x = load_example("messi.jpg", img_size=32).to(device)
Selected GPU 0 with 1951.125 MiB free memory
Define forward operator and noise model#
This example uses inpainting as the forward operator and Gaussian noise as the noise model.
sigma = 0.1 # noise level
physics = dinv.physics.Inpainting(mask=0.5, img_size=x.shape[1:], device=device)
physics.noise_model = dinv.physics.GaussianNoise(sigma=sigma)
# Set the global random seed from pytorch to ensure reproducibility of the example.
torch.manual_seed(0)
<torch._C.Generator object at 0x7f3a5410bbd0>
Define the likelihood#
Since the noise model is Gaussian, the negative log-likelihood is the L2 loss.
# load Gaussian Likelihood
likelihood = dinv.optim.data_fidelity.L2(sigma=sigma)
Define the prior#
The score a distribution can be approximated using Tweedieβs formula via the
deepinv.optim.ScorePrior class.
This example uses a pretrained DnCNN model.
From a Bayesian point of view, the score plays the role of the gradient of the
negative log prior
The hyperparameter sigma_denoiser (\(sigma\)) controls the strength of the prior.
In this example, we use a pretrained DnCNN model using the deepinv.loss.FNEJacobianSpectralNorm loss,
which makes sure that the denoiser is firmly non-expansive (see Terris et al.[2]), and helps to
stabilize the sampling algorithm.
sigma_denoiser = 2 / 255
prior = dinv.optim.ScorePrior(
denoiser=dinv.models.DnCNN(pretrained="download_lipschitz")
).to(device)
Create the MCMC sampler#
Here we use the Unadjusted Langevin Algorithm (ULA) to sample from the posterior defined in
deepinv.sampling.ULAIterator.
The hyperparameter step_size controls the step size of the MCMC sampler,
regularization controls the strength of the prior and
iterations controls the number of iterations of the sampler.
regularization = 0.9
step_size = 0.01 * (sigma**2)
iterations = int(5e3) if torch.cuda.is_available() else 10
params = {
"step_size": step_size,
"alpha": regularization,
"sigma": sigma_denoiser,
}
f = dinv.sampling.sampling_builder(
"ULA",
prior=prior,
data_fidelity=likelihood,
max_iter=iterations,
params_algo=params,
thinning=1,
verbose=True,
)
Generate the measurement#
We apply the forward model to generate the noisy measurement.
Run sampling algorithm and plot results#
The sampling algorithm returns the posterior mean and variance. We compare the posterior mean with a simple linear reconstruction.
mean, var = f.sample(y, physics)
# compute linear inverse
x_lin = physics.A_adjoint(y)
# compute PSNR
print(f"Linear reconstruction PSNR: {dinv.metric.PSNR()(x, x_lin).item():.2f} dB")
print(f"Posterior mean PSNR: {dinv.metric.PSNR()(x, mean).item():.2f} dB")
# plot results
error = (mean - x).abs().sum(dim=1).unsqueeze(1) # per pixel average abs. error
std = var.sum(dim=1).unsqueeze(1).sqrt() # per pixel average standard dev.
imgs = [x_lin, x, mean, std / std.flatten().max(), error / error.flatten().max()]
plot(
imgs,
titles=["measurement", "ground truth", "post. mean", "post. std", "abs. error"],
)

0%| | 0/5000 [00:00<?, ?it/s]
1%|β | 66/5000 [00:00<00:07, 652.56it/s]
3%|β | 133/5000 [00:00<00:07, 662.65it/s]
4%|β | 200/5000 [00:00<00:07, 665.03it/s]
5%|β | 267/5000 [00:00<00:07, 666.82it/s]
7%|β | 334/5000 [00:00<00:06, 667.95it/s]
8%|β | 405/5000 [00:00<00:06, 680.15it/s]
10%|β | 509/5000 [00:00<00:05, 796.13it/s]
12%|ββ | 611/5000 [00:00<00:05, 867.09it/s]
14%|ββ | 716/5000 [00:00<00:04, 922.13it/s]
16%|ββ | 821/5000 [00:01<00:04, 960.13it/s]
19%|ββ | 926/5000 [00:01<00:04, 985.77it/s]
21%|ββ | 1030/5000 [00:01<00:03, 999.64it/s]
23%|βββ | 1130/5000 [00:01<00:03, 996.10it/s]
25%|βββ | 1230/5000 [00:01<00:03, 988.01it/s]
27%|βββ | 1330/5000 [00:01<00:03, 989.43it/s]
29%|βββ | 1429/5000 [00:01<00:03, 984.21it/s]
31%|βββ | 1528/5000 [00:01<00:03, 981.18it/s]
33%|ββββ | 1627/5000 [00:01<00:03, 983.24it/s]
35%|ββββ | 1727/5000 [00:01<00:03, 985.51it/s]
37%|ββββ | 1827/5000 [00:02<00:03, 987.50it/s]
39%|ββββ | 1926/5000 [00:02<00:03, 986.54it/s]
40%|ββββ | 2025/5000 [00:02<00:03, 987.23it/s]
42%|βββββ | 2125/5000 [00:02<00:02, 988.36it/s]
44%|βββββ | 2225/5000 [00:02<00:02, 989.35it/s]
46%|βββββ | 2325/5000 [00:02<00:02, 989.60it/s]
48%|βββββ | 2425/5000 [00:02<00:02, 990.45it/s]
50%|βββββ | 2525/5000 [00:02<00:02, 990.61it/s]
52%|ββββββ | 2625/5000 [00:02<00:02, 990.82it/s]
55%|ββββββ | 2725/5000 [00:02<00:02, 991.08it/s]
56%|ββββββ | 2825/5000 [00:03<00:02, 990.99it/s]
58%|ββββββ | 2925/5000 [00:03<00:02, 991.52it/s]
60%|ββββββ | 3025/5000 [00:03<00:01, 991.52it/s]
62%|βββββββ | 3125/5000 [00:03<00:01, 991.73it/s]
64%|βββββββ | 3225/5000 [00:03<00:01, 985.44it/s]
66%|βββββββ | 3325/5000 [00:03<00:01, 987.27it/s]
68%|βββββββ | 3424/5000 [00:03<00:01, 983.78it/s]
70%|βββββββ | 3523/5000 [00:03<00:01, 980.19it/s]
72%|ββββββββ | 3622/5000 [00:03<00:01, 980.50it/s]
74%|ββββββββ | 3721/5000 [00:03<00:01, 966.72it/s]
76%|ββββββββ | 3821/5000 [00:04<00:01, 973.78it/s]
78%|ββββββββ | 3921/5000 [00:04<00:01, 978.70it/s]
80%|ββββββββ | 4021/5000 [00:04<00:00, 983.12it/s]
82%|βββββββββ | 4121/5000 [00:04<00:00, 985.81it/s]
84%|βββββββββ | 4221/5000 [00:04<00:00, 988.02it/s]
86%|βββββββββ | 4321/5000 [00:04<00:00, 988.92it/s]
88%|βββββββββ | 4421/5000 [00:04<00:00, 989.53it/s]
90%|βββββββββ | 4521/5000 [00:04<00:00, 989.71it/s]
92%|ββββββββββ| 4621/5000 [00:04<00:00, 990.01it/s]
94%|ββββββββββ| 4721/5000 [00:04<00:00, 990.15it/s]
96%|ββββββββββ| 4821/5000 [00:05<00:00, 990.01it/s]
98%|ββββββββββ| 4921/5000 [00:05<00:00, 990.48it/s]
100%|ββββββββββ| 5000/5000 [00:05<00:00, 955.42it/s]
Iteration 4999, current converge crit. = 1.43E-05, objective = 1.00E-03
Iteration 4999, current converge crit. = 3.42E-04, objective = 1.00E-03
Linear reconstruction PSNR: 8.55 dB
Posterior mean PSNR: 22.31 dB
- References:
Total running time of the script: (0 minutes 5.592 seconds)