Note
New to DeepInverse? Get started with the basics with the 5 minute quickstart tutorial..
Uncertainty quantification with PnP-ULA.#
This code shows you how to use sampling algorithms to quantify uncertainty of a reconstruction from incomplete and noisy measurements.
ULA obtains samples by running the following iteration:
where \(z_k \sim \mathcal{N}(0, I)\) is a Gaussian random variable, \(\eta\) is the step size and \(\alpha\) is a parameter controlling the regularization.
The PnP-ULA method is described in the paper Laumont et al.[1].
import deepinv as dinv
from deepinv.utils.plotting import plot
import torch
from deepinv.utils import load_example
Load image from the internet#
This example uses an image of Messi.
device = dinv.utils.get_freer_gpu() if torch.cuda.is_available() else "cpu"
x = load_example("messi.jpg", img_size=32).to(device)
Selected GPU 0 with 4949.25 MiB free memory
Define forward operator and noise model#
This example uses inpainting as the forward operator and Gaussian noise as the noise model.
sigma = 0.1 # noise level
physics = dinv.physics.Inpainting(mask=0.5, img_size=x.shape[1:], device=device)
physics.noise_model = dinv.physics.GaussianNoise(sigma=sigma)
# Set the global random seed from pytorch to ensure reproducibility of the example.
torch.manual_seed(0)
<torch._C.Generator object at 0x7f1228f32e90>
Define the likelihood#
Since the noise model is Gaussian, the negative log-likelihood is the L2 loss.
# load Gaussian Likelihood
likelihood = dinv.optim.data_fidelity.L2(sigma=sigma)
Define the prior#
The score a distribution can be approximated using Tweedieβs formula via the
deepinv.optim.ScorePrior class.
This example uses a pretrained DnCNN model.
From a Bayesian point of view, the score plays the role of the gradient of the
negative log prior
The hyperparameter sigma_denoiser (\(sigma\)) controls the strength of the prior.
In this example, we use a pretrained DnCNN model using the deepinv.loss.FNEJacobianSpectralNorm loss,
which makes sure that the denoiser is firmly non-expansive (see Terris et al.[2]), and helps to
stabilize the sampling algorithm.
sigma_denoiser = 2 / 255
prior = dinv.optim.ScorePrior(
denoiser=dinv.models.DnCNN(pretrained="download_lipschitz")
).to(device)
Create the MCMC sampler#
Here we use the Unadjusted Langevin Algorithm (ULA) to sample from the posterior defined in
deepinv.sampling.ULAIterator.
The hyperparameter step_size controls the step size of the MCMC sampler,
regularization controls the strength of the prior and
iterations controls the number of iterations of the sampler.
regularization = 0.9
step_size = 0.01 * (sigma**2)
iterations = int(5e3) if torch.cuda.is_available() else 10
params = {
"step_size": step_size,
"alpha": regularization,
"sigma": sigma_denoiser,
}
f = dinv.sampling.sampling_builder(
"ULA",
prior=prior,
data_fidelity=likelihood,
max_iter=iterations,
params_algo=params,
thinning=1,
verbose=True,
)
Generate the measurement#
We apply the forward model to generate the noisy measurement.
Run sampling algorithm and plot results#
The sampling algorithm returns the posterior mean and variance. We compare the posterior mean with a simple linear reconstruction.
mean, var = f.sample(y, physics)
# compute linear inverse
x_lin = physics.A_adjoint(y)
# compute PSNR
print(f"Linear reconstruction PSNR: {dinv.metric.PSNR()(x, x_lin).item():.2f} dB")
print(f"Posterior mean PSNR: {dinv.metric.PSNR()(x, mean).item():.2f} dB")
# plot results
error = (mean - x).abs().sum(dim=1).unsqueeze(1) # per pixel average abs. error
std = var.sum(dim=1).unsqueeze(1).sqrt() # per pixel average standard dev.
imgs = [x_lin, x, mean, std / std.flatten().max(), error / error.flatten().max()]
plot(
imgs,
titles=["measurement", "ground truth", "post. mean", "post. std", "abs. error"],
)

0%| | 0/5000 [00:00<?, ?it/s]
1%| | 58/5000 [00:00<00:08, 577.23it/s]
2%|β | 125/5000 [00:00<00:07, 628.88it/s]
4%|β | 192/5000 [00:00<00:07, 642.05it/s]
5%|β | 263/5000 [00:00<00:07, 666.67it/s]
7%|β | 330/5000 [00:00<00:07, 661.81it/s]
8%|β | 409/5000 [00:00<00:06, 704.75it/s]
10%|β | 493/5000 [00:00<00:06, 748.00it/s]
12%|ββ | 578/5000 [00:00<00:05, 777.70it/s]
13%|ββ | 662/5000 [00:00<00:05, 795.95it/s]
15%|ββ | 746/5000 [00:01<00:05, 809.43it/s]
17%|ββ | 834/5000 [00:01<00:05, 828.94it/s]
18%|ββ | 924/5000 [00:01<00:04, 850.27it/s]
20%|ββ | 1016/5000 [00:01<00:04, 868.52it/s]
22%|βββ | 1103/5000 [00:01<00:04, 868.07it/s]
24%|βββ | 1191/5000 [00:01<00:04, 869.27it/s]
26%|βββ | 1279/5000 [00:01<00:04, 870.78it/s]
27%|βββ | 1367/5000 [00:01<00:04, 870.96it/s]
29%|βββ | 1455/5000 [00:01<00:04, 856.78it/s]
31%|βββ | 1541/5000 [00:01<00:04, 845.21it/s]
33%|ββββ | 1626/5000 [00:02<00:04, 839.50it/s]
34%|ββββ | 1710/5000 [00:02<00:03, 834.59it/s]
36%|ββββ | 1794/5000 [00:02<00:03, 827.98it/s]
38%|ββββ | 1880/5000 [00:02<00:03, 835.90it/s]
39%|ββββ | 1965/5000 [00:02<00:03, 839.85it/s]
41%|ββββ | 2051/5000 [00:02<00:03, 843.42it/s]
43%|βββββ | 2136/5000 [00:02<00:03, 843.23it/s]
44%|βββββ | 2222/5000 [00:02<00:03, 846.16it/s]
46%|βββββ | 2308/5000 [00:02<00:03, 848.62it/s]
48%|βββββ | 2394/5000 [00:02<00:03, 849.61it/s]
50%|βββββ | 2480/5000 [00:03<00:02, 850.35it/s]
51%|ββββββ | 2566/5000 [00:03<00:02, 851.54it/s]
53%|ββββββ | 2652/5000 [00:03<00:02, 851.38it/s]
55%|ββββββ | 2738/5000 [00:03<00:02, 850.12it/s]
56%|ββββββ | 2824/5000 [00:03<00:02, 847.74it/s]
58%|ββββββ | 2910/5000 [00:03<00:02, 849.92it/s]
60%|ββββββ | 2996/5000 [00:03<00:02, 851.22it/s]
62%|βββββββ | 3082/5000 [00:03<00:02, 851.03it/s]
63%|βββββββ | 3168/5000 [00:03<00:02, 851.79it/s]
65%|βββββββ | 3254/5000 [00:03<00:02, 851.43it/s]
67%|βββββββ | 3340/5000 [00:04<00:01, 843.52it/s]
68%|βββββββ | 3425/5000 [00:04<00:01, 827.42it/s]
70%|βββββββ | 3508/5000 [00:04<00:01, 819.85it/s]
72%|ββββββββ | 3591/5000 [00:04<00:01, 819.49it/s]
74%|ββββββββ | 3676/5000 [00:04<00:01, 828.10it/s]
75%|ββββββββ | 3762/5000 [00:04<00:01, 835.78it/s]
77%|ββββββββ | 3848/5000 [00:04<00:01, 841.25it/s]
79%|ββββββββ | 3934/5000 [00:04<00:01, 844.38it/s]
80%|ββββββββ | 4020/5000 [00:04<00:01, 846.73it/s]
82%|βββββββββ | 4106/5000 [00:04<00:01, 848.58it/s]
84%|βββββββββ | 4192/5000 [00:05<00:00, 849.61it/s]
86%|βββββββββ | 4278/5000 [00:05<00:00, 850.35it/s]
87%|βββββββββ | 4364/5000 [00:05<00:00, 851.84it/s]
89%|βββββββββ | 4450/5000 [00:05<00:00, 850.42it/s]
91%|βββββββββ | 4536/5000 [00:05<00:00, 851.45it/s]
92%|ββββββββββ| 4622/5000 [00:05<00:00, 852.24it/s]
94%|ββββββββββ| 4708/5000 [00:05<00:00, 851.99it/s]
96%|ββββββββββ| 4794/5000 [00:05<00:00, 851.96it/s]
98%|ββββββββββ| 4880/5000 [00:05<00:00, 852.31it/s]
99%|ββββββββββ| 4966/5000 [00:05<00:00, 853.25it/s]
100%|ββββββββββ| 5000/5000 [00:06<00:00, 830.71it/s]
Iteration 4999, current converge crit. = 1.43E-05, objective = 1.00E-03
Iteration 4999, current converge crit. = 3.42E-04, objective = 1.00E-03
Linear reconstruction PSNR: 8.55 dB
Posterior mean PSNR: 22.31 dB
- References:
Total running time of the script: (0 minutes 6.472 seconds)