Note
New to DeepInverse? Get started with the basics with the 5 minute quickstart tutorial..
Vanilla Unfolded algorithm for super-resolution#
This is a simple example to show how to use vanilla unfolded Plug-and-Play. The DnCNN denoiser and the algorithm parameters (stepsize, regularization parameters) are trained jointly. For simplicity, we show how to train the algorithm on a small dataset. For optimal results, use a larger dataset.
import deepinv as dinv
import torch
from deepinv.models.utils import get_weights_url
from torch.utils.data import DataLoader
from deepinv.optim.data_fidelity import L2
from deepinv.optim.prior import PnP
from deepinv.optim import DRS
from torchvision import transforms
from deepinv.utils import get_data_home
from deepinv.datasets import BSDS500
Setup paths for data loading and results.#
BASE_DIR = get_data_home()
DATA_DIR = BASE_DIR / "measurements"
RESULTS_DIR = BASE_DIR / "results"
CKPT_DIR = BASE_DIR / "ckpts"
# Set the global random seed from pytorch to ensure reproducibility of the example.
torch.manual_seed(0)
device = dinv.utils.get_freer_gpu() if torch.cuda.is_available() else "cpu"
Selected GPU 0 with 8081.25 MiB free memory
Load base image datasets and degradation operators.#
In this example, we use the CBSD500 dataset for training and the Set3C dataset for testing.
img_size = 64 if torch.cuda.is_available() else 32
n_channels = 3 # 3 for color images, 1 for gray-scale images
operation = "super-resolution"
Generate a dataset of low resolution images and load it.#
We use the Downsampling class from the physics module to generate a dataset of low resolution images.
# For simplicity, we use a small dataset for training.
# To be replaced for optimal results. For example, you can use the larger DIV2K or LSDIR datasets (also provided in the library).
# Specify the train and test transforms to be applied to the input images.
test_transform = transforms.Compose(
[transforms.CenterCrop(img_size), transforms.ToTensor()]
)
train_transform = transforms.Compose(
[transforms.RandomCrop(img_size), transforms.ToTensor()]
)
# Define the base train and test datasets of clean images.
train_base_dataset = BSDS500(
BASE_DIR, download=True, train=True, transform=train_transform
)
test_base_dataset = BSDS500(
BASE_DIR, download=False, train=False, transform=test_transform
)
# Use parallel dataloader if using a GPU to speed up training, otherwise, as all computes are on CPU, use synchronous
# dataloading.
num_workers = 4 if torch.cuda.is_available() else 0
# Degradation parameters
factor = 2
noise_level_img = 0.03
# Generate the gaussian blur downsampling operator.
physics = dinv.physics.Downsampling(
filter="gaussian",
img_size=(n_channels, img_size, img_size),
factor=factor,
device=device,
noise_model=dinv.physics.GaussianNoise(sigma=noise_level_img),
)
my_dataset_name = "demo_unfolded_sr"
n_images_max = (
None if torch.cuda.is_available() else 10
) # max number of images used for training (use all if you have a GPU)
measurement_dir = DATA_DIR / "BSDS500" / operation
generated_datasets_path = dinv.datasets.generate_dataset(
train_dataset=train_base_dataset,
test_dataset=test_base_dataset,
physics=physics,
device=device,
save_dir=measurement_dir,
train_datapoints=n_images_max,
num_workers=num_workers,
dataset_filename=str(my_dataset_name),
)
train_dataset = dinv.datasets.HDF5Dataset(path=generated_datasets_path, train=True)
test_dataset = dinv.datasets.HDF5Dataset(path=generated_datasets_path, train=False)
0it [00:00, ?it/s]
832kB [00:00, 8.47MB/s]
5.50MB [00:00, 31.9MB/s]
8.56MB [00:00, 30.5MB/s]
11.5MB [00:00, 29.4MB/s]
14.3MB [00:00, 29.3MB/s]
17.1MB [00:00, 28.8MB/s]
19.9MB [00:00, 28.8MB/s]
23.1MB [00:00, 29.6MB/s]
26.5MB [00:00, 31.4MB/s]
29.8MB [00:01, 32.2MB/s]
33.1MB [00:01, 33.0MB/s]
36.3MB [00:01, 31.8MB/s]
39.7MB [00:01, 32.8MB/s]
43.1MB [00:01, 33.4MB/s]
46.3MB [00:01, 33.0MB/s]
49.9MB [00:01, 34.2MB/s]
53.2MB [00:01, 33.7MB/s]
56.4MB [00:01, 30.6MB/s]
59.4MB [00:02, 25.9MB/s]
62.1MB [00:02, 23.2MB/s]
64.4MB [00:02, 21.8MB/s]
66.6MB [00:02, 20.6MB/s]
68.7MB [00:02, 19.9MB/s]
70.6MB [00:02, 19.1MB/s]
72.5MB [00:02, 18.7MB/s]
74.3MB [00:02, 18.5MB/s]
76.1MB [00:03, 18.0MB/s]
77.9MB [00:03, 18.0MB/s]
79.7MB [00:03, 18.0MB/s]
81.5MB [00:03, 18.2MB/s]
83.2MB [00:03, 17.9MB/s]
85.0MB [00:03, 17.8MB/s]
86.8MB [00:03, 17.7MB/s]
88.6MB [00:03, 17.9MB/s]
90.4MB [00:03, 17.7MB/s]
92.2MB [00:04, 17.8MB/s]
93.9MB [00:04, 17.5MB/s]
95.6MB [00:04, 17.5MB/s]
97.3MB [00:04, 17.5MB/s]
99.0MB [00:04, 17.4MB/s]
101MB [00:04, 17.5MB/s]
102MB [00:04, 17.4MB/s]
104MB [00:04, 17.4MB/s]
106MB [00:04, 17.5MB/s]
108MB [00:04, 17.3MB/s]
109MB [00:05, 17.4MB/s]
111MB [00:05, 17.5MB/s]
113MB [00:05, 17.6MB/s]
114MB [00:05, 17.9MB/s]
116MB [00:05, 17.9MB/s]
118MB [00:05, 17.8MB/s]
120MB [00:05, 17.7MB/s]
122MB [00:05, 17.2MB/s]
123MB [00:05, 17.5MB/s]
125MB [00:05, 17.7MB/s]
127MB [00:06, 18.1MB/s]
129MB [00:06, 18.0MB/s]
130MB [00:06, 17.9MB/s]
132MB [00:06, 18.9MB/s]
134MB [00:06, 9.33MB/s]
139MB [00:06, 16.5MB/s]
143MB [00:07, 21.1MB/s]
146MB [00:07, 22.0MB/s]
150MB [00:07, 24.3MB/s]
154MB [00:07, 26.1MB/s]
157MB [00:07, 14.8MB/s]
159MB [00:08, 12.7MB/s]
160MB [00:08, 20.3MB/s]
Extracting: 0%| | 0/2492 [00:00<?, ?it/s]
Extracting: 7%|▋ | 178/2492 [00:00<00:01, 1770.03it/s]
Extracting: 14%|█▍ | 356/2492 [00:00<00:01, 1763.82it/s]
Extracting: 21%|██▏ | 534/2492 [00:00<00:01, 1768.77it/s]
Extracting: 29%|██▉ | 719/2492 [00:00<00:00, 1796.95it/s]
Extracting: 36%|███▋ | 905/2492 [00:00<00:00, 1818.01it/s]
Extracting: 44%|████▎ | 1087/2492 [00:00<00:01, 1260.78it/s]
Extracting: 50%|████▉ | 1234/2492 [00:01<00:01, 806.72it/s]
Extracting: 54%|█████▍ | 1347/2492 [00:01<00:01, 633.59it/s]
Extracting: 58%|█████▊ | 1436/2492 [00:01<00:01, 554.73it/s]
Extracting: 61%|██████ | 1509/2492 [00:01<00:01, 514.20it/s]
Extracting: 66%|██████▌ | 1639/2492 [00:01<00:01, 602.31it/s]
Extracting: 69%|██████▊ | 1711/2492 [00:02<00:01, 501.54it/s]
Extracting: 100%|██████████| 2492/2492 [00:02<00:00, 1101.06it/s]
Dataset has been saved at datasets/measurements/BSDS500/super-resolution/demo_unfolded_sr0.h5
Define the unfolded PnP algorithm.#
The chosen algorithm is here DRS (Douglas-Rachford Splitting). Note that if the prior (resp. a parameter) is initialized with a list of length max_iter, then a distinct model (resp. parameter) is trained for each iteration. For fixed trained model prior (resp. parameter) across iterations, initialize with a single element.
# Unrolled optimization algorithm parameters
max_iter = 5 # number of unfolded layers
# Select the data fidelity term
data_fidelity = L2()
# Set up the trainable denoising prior
# Here the prior model is common for all iterations
prior = PnP(denoiser=dinv.models.DnCNN(depth=20, pretrained="download").to(device))
# The parameters are initialized with a list of length max_iter, so that a distinct parameter is trained for each iteration.
stepsize = [1.0] * max_iter # stepsize of the algorithm
sigma_denoiser = [
1.0
] * max_iter # noise level parameter of the denoiser (not used by DnCNN)
beta = 1.0 # relaxation parameter of the Douglas-Rachford splitting
trainable_params = [
"stepsize",
"beta",
"sigma_denoiser",
] # define which parameters are trainable
# Logging parameters
verbose = True
# Define the unfolded trainable model.
model = DRS(
stepsize=stepsize,
sigma_denoiser=sigma_denoiser,
beta=beta,
trainable_params=trainable_params,
data_fidelity=data_fidelity,
max_iter=max_iter,
prior=prior,
unfold=True,
)
Define the training parameters.#
We use the Adam optimizer and the StepLR scheduler.
# training parameters
epochs = 5 if torch.cuda.is_available() else 1
learning_rate = 5e-4
train_batch_size = 32 if torch.cuda.is_available() else 1
test_batch_size = 3
# choose optimizer and scheduler
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-8)
# If working on CPU, start with a pretrained model to reduce training time
if not torch.cuda.is_available():
file_name = "demo_vanilla_unfolded.pth"
url = get_weights_url(model_name="demo", file_name=file_name)
ckpt = torch.hub.load_state_dict_from_url(
url, map_location=lambda storage, loc: storage, file_name=file_name
)
model.load_state_dict(ckpt["state_dict"])
optimizer.load_state_dict(ckpt["optimizer"])
# choose supervised training loss
losses = [dinv.loss.SupLoss(metric=dinv.metric.MSE())]
train_dataloader = DataLoader(
train_dataset, batch_size=train_batch_size, num_workers=num_workers, shuffle=True
)
test_dataloader = DataLoader(
test_dataset, batch_size=test_batch_size, num_workers=num_workers, shuffle=False
)
Train the network#
We train the network using the deepinv.Trainer class.
trainer = dinv.Trainer(
model,
physics=physics,
train_dataloader=train_dataloader,
eval_dataloader=test_dataloader,
epochs=epochs,
losses=losses,
optimizer=optimizer,
device=device,
early_stop=True, # set to None to disable early stopping
save_path=str(CKPT_DIR / operation),
verbose=verbose,
show_progress_bar=False, # disable progress bar for better vis in sphinx gallery.
)
model = trainer.train()
/local/jtachell/deepinv/deepinv/deepinv/training/trainer.py:1337: UserWarning: non_blocking_transfers=True but DataLoader.pin_memory=False; set pin_memory=True to overlap host-device copies with compute.
self.setup_train()
The model has 668238 trainable parameters
/local/jtachell/deepinv/deepinv/deepinv/training/trainer.py:514: UserWarning: early_stop should be an integer or None. Setting early_stop=3. This behaviour will be deprecated in future versions.
warnings.warn(
Train epoch 0: TotalLoss=0.009, PSNR=21.591
Eval epoch 0: PSNR=20.58
Best model saved at epoch 1
Train epoch 1: TotalLoss=0.007, PSNR=22.885
Eval epoch 1: PSNR=20.943
Best model saved at epoch 2
Train epoch 2: TotalLoss=0.007, PSNR=23.17
Eval epoch 2: PSNR=21.412
Best model saved at epoch 3
Train epoch 3: TotalLoss=0.006, PSNR=23.65
Eval epoch 3: PSNR=21.5
Best model saved at epoch 4
Train epoch 4: TotalLoss=0.006, PSNR=23.874
Eval epoch 4: PSNR=21.761
Best model saved at epoch 5
Test the network#
trainer.test(test_dataloader)
test_sample, _ = next(iter(test_dataloader))
model.eval()
test_sample = test_sample.to(device)
# Get the measurements and the ground truth
y = physics(test_sample)
with torch.no_grad():
rec = model(y, physics=physics)
backprojected = physics.A_adjoint(y)
dinv.utils.plot(
[backprojected, rec, test_sample],
titles=["Linear", "Reconstruction", "Ground truth"],
suptitle="Reconstruction results",
)

/local/jtachell/deepinv/deepinv/deepinv/training/trainer.py:1529: UserWarning: non_blocking_transfers=True but DataLoader.pin_memory=False; set pin_memory=True to overlap host-device copies with compute.
self.setup_train(train=False)
Eval epoch 0: PSNR=21.761, PSNR no learning=9.122
Test results:
PSNR no learning: 9.122 +- 2.903
PSNR: 21.761 +- 3.686
/local/jtachell/deepinv/deepinv/deepinv/utils/plotting.py:387: UserWarning: This figure was using a layout engine that is incompatible with subplots_adjust and/or tight_layout; not calling subplots_adjust.
fig.subplots_adjust(top=0.75)
Total running time of the script: (0 minutes 42.395 seconds)