Note
Go to the end to download the full example code.
Using huggingface dataset
This simple example shows how to load and prepare properly a huggingface dataset.
Context: having a quick access to several datasets available under the huggingface format.
Available datasets: https://huggingface.co/datasets?search=deepinv
Here we use drunet_dataset.
Load libraries
from datasets import load_dataset
from torch.utils.data import IterableDataset, DataLoader
from torchvision import transforms
import deepinv as dinv
Stream data from Internet
Stream data from huggingface servers: only a limited number of samples is loaded on memory at all time, which avoid having to save the dataset on disk and avoid overloading the memory capacity.
# source : https://huggingface.co/datasets/deepinv/drunet_dataset
# type : datasets.iterable_dataset.IterableDataset
raw_hf_train_dataset = load_dataset(
"deepinv/drunet_dataset", split="train", streaming=True
)
print("Number of data files used to store raw data: ", raw_hf_train_dataset.n_shards)
Number of data files used to store raw data: 1
Shuffle data with buffer shuffling
In streaming mode, we can only read sequentially the data sample in a certain order thus we are not able to do exact shuffling.
An alternative way is the buffer shuffling which load a fixed number of samples in memory and let us pick randomly one sample among this fixed number of samples.
# https://huggingface.co/docs/datasets/about_mapstyle_vs_iterable
raw_hf_train_dataset = raw_hf_train_dataset.shuffle(seed=42, buffer_size=100)
Apply transformation on dataset
We define transformation with torchvision.transforms
module, but it can be any other function.
# Function that should be applied to a PIL Image
img_transforms = transforms.Compose(
[
transforms.Resize((224, 224)), # Resize all images to 224x224
transforms.ToTensor(),
]
)
# Class that apply `transform` on data samples of a datasets.iterable_dataset.IterableDataset
class HFDataset(IterableDataset):
r"""
Creates an iteratble dataset from a Hugging Face dataset to enable streaming.
"""
def __init__(self, hf_dataset, transforms=None, key="png"):
self.hf_dataset = hf_dataset
self.transform = transforms
self.key = key
def __iter__(self):
for sample in self.hf_dataset:
if self.transform:
out = self.transform(sample[self.key])
else:
out = sample[self.key]
yield out
hf_train_dataset = HFDataset(raw_hf_train_dataset, transforms=img_transforms)
Create a dataloader
With
datasets.iterable_dataset.IterableDataset
, data samples are stored in 1 file or in a few files.In case of few files, we can use
num_workers
argument to load data samples in parallel.if raw_hf_train_dataset.n_shards > 1:
# num_workers <= raw_hf_train_dataset.n_shards (number of data files)
# num_workers <= number of available cpu cores
num_workers = ...
train_dataloader = DataLoader(
hf_train_dataset, batch_size=2, num_workers=num_workers
)
else:
train_dataloader = DataLoader(hf_train_dataset, batch_size=2)
# display a batch
batch = next(iter(train_dataloader))
dinv.utils.plot([batch[0], batch[1]])
Total running time of the script: (0 minutes 6.922 seconds)