Poisson denoising using Poisson2Sparse#

This code shows how to restore a single image corrupted by Poisson noise using Poisson2Sparse, without requiring external training or knowledge of the noise level.

This method is based on the paper β€œPoisson2Sparse” Ta et al.[1] and restores an image by learning a sparse non-linear dictionary parametrized by a neural network using a combination of Neighbor2Neighbor Huang et al.[2], of the negative log Poisson likelihood, of the \(\ell^1\) pixel distance and of a sparsity-inducing \(\ell^1\) regularization function on the weights.

import deepinv as dinv
import torch

Load a Poisson corrupted image#

This example uses an image from the microscopy dataset FMD Zhang et al.[3].

# Seed the RNGs for reproducibility
torch.manual_seed(0)
torch.cuda.manual_seed(0)

device = dinv.utils.get_freer_gpu() if torch.cuda.is_available() else "cpu"

physics = dinv.physics.Denoising(dinv.physics.PoissonNoise(gain=0.01, normalize=True))

x = dinv.utils.demo.load_example(
    "FMD_TwoPhoton_MICE_R_gt_12_avg50.png", img_size=(256, 256)
).to(device)
x = x[:, 0:1, :64, :64]
x = x.clamp(0, 1)
y = physics(x)
Selected GPU 0 with 3772.25 MiB free memory

Define the Poisson2Sparse model

backbone = dinv.models.ConvLista(
    in_channels=1,
    out_channels=1,
    kernel_size=3,
    num_filters=512,
    num_iter=10,
    stride=2,
    threshold=0.01,
)

model = dinv.models.Poisson2Sparse(
    backbone=backbone,
    lr=1e-4,
    num_iter=200,
    weight_n2n=2.0,
    weight_l1_regularization=1e-5,
    verbose=True,
).to(device)

Run the model#

Note that we do not pass in the physics model as Poisson2Sparse assumes a Poisson noise model internally and does not depend on the noise level.

x_hat = model(y)

# Compute and display PSNR values
learning_free_psnr = dinv.metric.PSNR()(y, x).item()
model_psnr = dinv.metric.PSNR()(x_hat, x).item()
print(f"Measurement PSNR: {learning_free_psnr:.1f} dB")
print(f"Poisson2Sparse PSNR: {model_psnr:.1f} dB")

# Plot results
dinv.utils.plot(
    [y, x_hat, x],
    titles=["Measurement", "Poisson2Sparse", "Ground truth"],
    subtitles=[f"{learning_free_psnr:.1f} dB", f"{model_psnr:.1f} dB", ""],
)
Measurement, Poisson2Sparse, Ground truth
  0%|          | 0/200 [00:00<?, ?it/s]
  2%|▏         | 3/200 [00:00<00:07, 24.89it/s]
  4%|▍         | 8/200 [00:00<00:05, 36.45it/s]
  6%|β–‹         | 13/200 [00:00<00:04, 38.73it/s]
  9%|β–‰         | 18/200 [00:00<00:04, 41.57it/s]
 12%|β–ˆβ–        | 23/200 [00:00<00:04, 42.11it/s]
 14%|β–ˆβ–        | 28/200 [00:00<00:04, 42.75it/s]
 16%|β–ˆβ–‹        | 33/200 [00:00<00:03, 42.23it/s]
 19%|β–ˆβ–‰        | 38/200 [00:00<00:03, 42.65it/s]
 22%|β–ˆβ–ˆβ–       | 43/200 [00:01<00:03, 43.47it/s]
 24%|β–ˆβ–ˆβ–       | 48/200 [00:01<00:03, 44.40it/s]
 26%|β–ˆβ–ˆβ–‹       | 53/200 [00:01<00:03, 43.92it/s]
 29%|β–ˆβ–ˆβ–‰       | 58/200 [00:01<00:03, 43.70it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 63/200 [00:01<00:03, 44.12it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 68/200 [00:01<00:03, 43.39it/s]
 36%|β–ˆβ–ˆβ–ˆβ–‹      | 73/200 [00:01<00:02, 44.15it/s]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 78/200 [00:01<00:02, 43.91it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 83/200 [00:01<00:02, 44.89it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 88/200 [00:02<00:02, 44.04it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 93/200 [00:02<00:02, 44.90it/s]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 98/200 [00:02<00:02, 44.56it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 103/200 [00:02<00:02, 43.52it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 108/200 [00:02<00:02, 44.84it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 113/200 [00:02<00:01, 44.04it/s]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 118/200 [00:02<00:01, 43.90it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 123/200 [00:02<00:01, 44.15it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 128/200 [00:02<00:01, 43.70it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 133/200 [00:03<00:01, 44.06it/s]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 138/200 [00:03<00:01, 44.13it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 143/200 [00:03<00:01, 43.06it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 148/200 [00:03<00:01, 43.97it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 153/200 [00:03<00:01, 42.93it/s]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 158/200 [00:03<00:00, 43.81it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 163/200 [00:03<00:00, 43.37it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 168/200 [00:03<00:00, 42.97it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 173/200 [00:04<00:00, 42.51it/s]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 178/200 [00:04<00:00, 43.19it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 183/200 [00:04<00:00, 44.35it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 188/200 [00:04<00:00, 43.98it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 193/200 [00:04<00:00, 44.94it/s]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 198/200 [00:04<00:00, 44.59it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 200/200 [00:04<00:00, 43.49it/s]
Measurement PSNR: 27.5 dB
Poisson2Sparse PSNR: 30.3 dB
References:

Total running time of the script: (0 minutes 6.482 seconds)

Gallery generated by Sphinx-Gallery