Poisson denoising using Poisson2Sparse#

This code shows how to restore a single image corrupted by Poisson noise using Poisson2Sparse, without requiring external training or knowledge of the noise level.

This method is based on the paper β€œPoisson2Sparse” Ta et al.[1] and restores an image by learning a sparse non-linear dictionary parametrized by a neural network using a combination of Neighbor2Neighbor Huang et al.[2], of the negative log Poisson likelihood, of the \(\ell^1\) pixel distance and of a sparsity-inducing \(\ell^1\) regularization function on the weights.

import deepinv as dinv
import torch

Load a Poisson corrupted image#

This example uses an image from the microscopy dataset FMD Zhang et al.[3].

# Seed the RNGs for reproducibility
torch.manual_seed(0)
torch.cuda.manual_seed(0)

device = dinv.utils.get_freer_gpu() if torch.cuda.is_available() else "cpu"

physics = dinv.physics.Denoising(dinv.physics.PoissonNoise(gain=0.01, normalize=True))

x = dinv.utils.demo.load_example(
    "FMD_TwoPhoton_MICE_R_gt_12_avg50.png", img_size=(256, 256)
).to(device)
x = x[:, 0:1, :64, :64]
x = x.clamp(0, 1)
y = physics(x)
Selected GPU 0 with 4064.25 MiB free memory

Define the Poisson2Sparse model

backbone = dinv.models.ConvLista(
    in_channels=1,
    out_channels=1,
    kernel_size=3,
    num_filters=512,
    num_iter=10,
    stride=2,
    threshold=0.01,
)

model = dinv.models.Poisson2Sparse(
    backbone=backbone,
    lr=1e-4,
    num_iter=200,
    weight_n2n=2.0,
    weight_l1_regularization=1e-5,
    verbose=True,
).to(device)

Run the model#

Note that we do not pass in the physics model as Poisson2Sparse assumes a Poisson noise model internally and does not depend on the noise level.

x_hat = model(y)

# Compute and display PSNR values
learning_free_psnr = dinv.metric.PSNR()(y, x).item()
model_psnr = dinv.metric.PSNR()(x_hat, x).item()
print(f"Measurement PSNR: {learning_free_psnr:.1f} dB")
print(f"Poisson2Sparse PSNR: {model_psnr:.1f} dB")

# Plot results
dinv.utils.plot(
    [y, x_hat, x],
    titles=["Measurement", "Poisson2Sparse", "Ground truth"],
    subtitles=[f"{learning_free_psnr:.1f} dB", f"{model_psnr:.1f} dB", ""],
)
Measurement, Poisson2Sparse, Ground truth
  0%|          | 0/200 [00:00<?, ?it/s]
  2%|▏         | 4/200 [00:00<00:04, 39.44it/s]
  4%|▍         | 8/200 [00:00<00:05, 36.38it/s]
  6%|β–Œ         | 12/200 [00:00<00:05, 34.13it/s]
  8%|β–Š         | 16/200 [00:00<00:05, 33.86it/s]
 10%|β–ˆ         | 20/200 [00:00<00:05, 33.64it/s]
 12%|β–ˆβ–        | 24/200 [00:00<00:05, 33.03it/s]
 14%|β–ˆβ–        | 28/200 [00:00<00:05, 32.29it/s]
 16%|β–ˆβ–Œ        | 32/200 [00:00<00:05, 32.83it/s]
 18%|β–ˆβ–Š        | 36/200 [00:01<00:04, 32.81it/s]
 20%|β–ˆβ–ˆ        | 40/200 [00:01<00:04, 32.87it/s]
 22%|β–ˆβ–ˆβ–       | 44/200 [00:01<00:04, 32.91it/s]
 24%|β–ˆβ–ˆβ–       | 48/200 [00:01<00:04, 32.95it/s]
 26%|β–ˆβ–ˆβ–Œ       | 52/200 [00:01<00:04, 32.89it/s]
 28%|β–ˆβ–ˆβ–Š       | 56/200 [00:01<00:04, 31.49it/s]
 30%|β–ˆβ–ˆβ–ˆ       | 60/200 [00:01<00:04, 31.00it/s]
 32%|β–ˆβ–ˆβ–ˆβ–      | 64/200 [00:01<00:04, 31.73it/s]
 34%|β–ˆβ–ˆβ–ˆβ–      | 68/200 [00:02<00:04, 32.19it/s]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 72/200 [00:02<00:03, 32.30it/s]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 76/200 [00:02<00:03, 32.52it/s]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 80/200 [00:02<00:03, 32.65it/s]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 84/200 [00:02<00:03, 32.83it/s]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 88/200 [00:02<00:03, 32.95it/s]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 92/200 [00:02<00:03, 32.86it/s]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 96/200 [00:02<00:03, 32.95it/s]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 100/200 [00:03<00:03, 33.09it/s]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 104/200 [00:03<00:02, 33.03it/s]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 108/200 [00:03<00:02, 32.94it/s]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 112/200 [00:03<00:02, 33.08it/s]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 116/200 [00:03<00:02, 33.04it/s]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 120/200 [00:03<00:02, 33.05it/s]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 124/200 [00:03<00:02, 33.04it/s]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 128/200 [00:03<00:02, 33.10it/s]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 132/200 [00:04<00:02, 32.93it/s]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 136/200 [00:04<00:01, 33.17it/s]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 140/200 [00:04<00:01, 32.96it/s]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 144/200 [00:04<00:01, 32.97it/s]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 148/200 [00:04<00:01, 33.11it/s]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 152/200 [00:04<00:01, 33.06it/s]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 156/200 [00:04<00:01, 33.09it/s]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 160/200 [00:04<00:01, 33.06it/s]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 164/200 [00:04<00:01, 33.10it/s]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 168/200 [00:05<00:00, 33.10it/s]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 172/200 [00:05<00:00, 33.09it/s]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 176/200 [00:05<00:00, 32.99it/s]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 180/200 [00:05<00:00, 33.21it/s]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 184/200 [00:05<00:00, 33.01it/s]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 188/200 [00:05<00:00, 33.09it/s]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 192/200 [00:05<00:00, 33.03it/s]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 196/200 [00:05<00:00, 33.02it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 200/200 [00:06<00:00, 32.09it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 200/200 [00:06<00:00, 32.88it/s]
Measurement PSNR: 27.5 dB
Poisson2Sparse PSNR: 30.3 dB
References:

Total running time of the script: (0 minutes 6.936 seconds)

Gallery generated by Sphinx-Gallery