ConvLista#

class deepinv.models.ConvLista(*, in_channels, out_channels, kernel_size=3, num_filters=512, stride=2, num_iter=10, threshold=1e-2)[source]#

Bases: Module

Convolutional LISTA network.

The architecture was introduced by Simon and Elad[1], and it is well suited as a backbone for Poisson2Sparse (see deepinv.models.Poisson2Sparse).

Note

The decoder expects images with a dynamic range normalized between zero and one.

Parameters:
  • in_channels (int) – Number of channels in the input image.

  • out_channels (int) – Number of channels in the output image.

  • kernel_size (int) – Size of the convolutional kernels (default: 3).

  • num_filters (int) – Number of filters in the convolutional layers (default: 512).

  • stride (int) – Stride of the convolutional layers (default: 2).

  • num_iter (int) – Number of iterations of the LISTA algorithm (default: 10).

  • threshold (float) – Initial value for the learned soft-thresholding (default: 1e-2).


References:

Examples using ConvLista:#

Poisson denoising using Poisson2Sparse

Poisson denoising using Poisson2Sparse