deepinv.metric#

Metrics are generally used to evaluate the performance of a model, or as the distance function inside a loss function. Please refer to the user guide for more information.

Base class#

User Guide: refer to Metrics for more information.

deepinv.loss.metric.Metric

Base class for metrics.

Full Reference Metrics#

User Guide: refer to Full Reference Metrics for more information.

deepinv.loss.metric.MSE

Mean Squared Error metric.

deepinv.loss.metric.NMSE

Normalised Mean Squared Error metric.

deepinv.loss.metric.MAE

Mean Absolute Error metric.

deepinv.loss.metric.PSNR

Peak Signal-to-Noise Ratio (PSNR) metric.

deepinv.loss.metric.SSIM

Structural Similarity Index (SSIM) metric using torchmetrics.

deepinv.loss.metric.QNR

Quality with No Reference (QNR) metric for pansharpening.

deepinv.loss.metric.L1L2

Combined L2 and L1 metric.

deepinv.loss.metric.LpNorm

\(\ell_p\) metric for \(p>0\).

deepinv.loss.metric.LPIPS

Learned Perceptual Image Patch Similarity (LPIPS) metric.

No Reference Metrics#

User Guide: refer to No Reference Metrics for more information.

deepinv.loss.metric.NIQE

Natural Image Quality Evaluator (NIQE) metric.