PoissonLikelihood#

class deepinv.optim.PoissonLikelihood(gain=1.0, bkg=0, denormalize=True)[source]#

Bases: DataFidelity

Poisson negative log-likelihood.

\[\datafid{z}{y} = -y^{\top} \log(z+\beta)+1^{\top}z\]

where \(y\) are the measurements, \(z\) is the estimated (positive) density and \(\beta\geq 0\) is an optional background level.

Note

The function is not Lipschitz smooth w.r.t. \(z\) in the absence of background (\(\beta=0\)).

Parameters:
  • gain (float) – gain of the measurement \(y\). Default: 1.0.

  • bkg (float) – background level \(\beta\). Default: 0.

  • denormalize (bool) – if True, the measurement is multiplied by the gain. Default: True.

Examples using PoissonLikelihood:#

Plug-and-Play algorithm with Mirror Descent for Poisson noise inverse problems.

Plug-and-Play algorithm with Mirror Descent for Poisson noise inverse problems.

Implementing DiffPIR

Implementing DiffPIR