AutoEncoder#

class deepinv.models.AutoEncoder(dim_input, dim_mid=1000, dim_hid=32, residual=True)[source]#

Bases: Denoiser

Simple fully connected autoencoder network.

Simple architecture that can be used for debugging or fast prototyping.

Parameters:
  • dim_input (int) – total number of elements (pixels) of the input.

  • dim_hid (int) – number of features in intermediate layer.

  • dim_hid – latent space dimension.

  • residual (int) – use a residual connection between input and output.

forward(x, sigma=None, **kwargs)[source]#

Applies denoiser \(\denoiser{x}{\sigma}\).

Parameters:
Returns:

(torch.Tensor) Denoised tensor.