L2Distance#

class deepinv.optim.L2Distance(sigma=1.0)[source]#

Bases: Distance

Implementation of \(\distancename\) as the normalized \(\ell_2\) norm

\[f(x) = \frac{1}{2\sigma^2}\|x-y\|^2\]
Parameters:

sigma (float) – normalization parameter. Default: 1.

fn(x, y, *args, **kwargs)[source]#

Computes the distance \(\distance{x}{y}\) i.e.

\[\distance{x}{y} = \frac{1}{2}\|x-y\|^2\]
Parameters:
Returns:

(torch.Tensor) data fidelity \(\datafid{u}{y}\) of size B with B the size of the batch.

grad(x, y, *args, **kwargs)[source]#

Computes the gradient of \(\distancename\), that is \(\nabla_{x}\distance{x}{y}\), i.e.

\[\nabla_{x}\distance{x}{y} = \frac{1}{\sigma^2} x-y\]
Parameters:
Returns:

(torch.Tensor) gradient of the distance function \(\nabla_{x}\distance{x}{y}\).

prox(x, y, *args, gamma=1.0, **kwargs)[source]#

Proximal operator of \(\gamma \distance{x}{y} = \frac{\gamma}{2 \sigma^2} \|x-y\|^2\).

Computes \(\operatorname{prox}_{\gamma \distancename}\), i.e.

\[\operatorname{prox}_{\gamma \distancename} = \underset{u}{\text{argmin}} \frac{\gamma}{2\sigma^2}\|u-y\|_2^2+\frac{1}{2}\|u-x\|_2^2\]
Parameters:
  • x (torch.Tensor) – Variable \(x\) at which the proximity operator is computed.

  • y (torch.Tensor) – Data \(y\).

  • gamma (float) – thresholding parameter.

Returns:

(torch.Tensor) proximity operator \(\operatorname{prox}_{\gamma \distancename}(x)\).