LogPoissonLikelihood#
- class deepinv.optim.LogPoissonLikelihood(N0=1024.0, mu=0.02)[source]#
Bases:
DataFidelity
Log-Poisson negative log-likelihood.
\[\datafid{z}{y} = N_0 (1^{\top} \exp(-\mu z)+ \mu \exp(-\mu y)^{\top}x)\]Corresponds to LogPoissonNoise with the same arguments N0 and mu. There is no closed-form of the proximal operator known.
Examples using LogPoissonLikelihood
:#
Patch priors for limited-angle computed tomography
Patch priors for limited-angle computed tomography