LogPoissonLikelihoodDistance#
- class deepinv.optim.LogPoissonLikelihoodDistance(N0=1024.0, mu=0.02)[source]#
Bases:
Distance
Log-Poisson negative log-likelihood.
\[\distancz{z}{y} = N_0 (1^{\top} \exp(-\mu z)+ \mu \exp(-\mu y)^{\top}x)\]Corresponds to LogPoissonNoise with the same arguments N0 and mu. There is no closed-form of the prox known.
- fn(x, y, *args, **kwargs)[source]#
Computes the distance \(\distance{x}{y}\).
- Parameters:
x (torch.Tensor) – Variable \(x\).
y (torch.Tensor) – Observation \(y\).
- Returns:
(torch.Tensor) distance \(\distance{x}{y}\) of size B with B the size of the batch.