LogPoissonLikelihoodDistance#

class deepinv.optim.LogPoissonLikelihoodDistance(N0=1024.0, mu=0.02)[source]#

Bases: Distance

Log-Poisson negative log-likelihood.

\[\distancz{z}{y} = N_0 (1^{\top} \exp(-\mu z)+ \mu \exp(-\mu y)^{\top}x)\]

Corresponds to LogPoissonNoise with the same arguments N0 and mu. There is no closed-form of the prox known.

Parameters:
  • N0 (float) – average number of photons

  • mu (float) – normalization constant

fn(x, y, *args, **kwargs)[source]#

Computes the distance \(\distance{x}{y}\).

Parameters:
Returns:

(torch.Tensor) distance \(\distance{x}{y}\) of size B with B the size of the batch.