gradient_descent#
- class deepinv.optim.utils.gradient_descent(grad_f, x, step_size=1.0, max_iter=100.0, tol=1e-05)[source]#
Bases:
Standard gradient descent algorithm`.
- Parameters:
grad_f (callable) – gradient of function to bz minimized as a callable function.
x (torch.Tensor) – input tensor.
step_size (torch.Tensor, float) – (constant) step size of the gradient descent algorithm.
max_iter (int) – maximum number of iterations.
tol (float) – absolute tolerance for stopping the algorithm.
- Returns:
torch.Tensor \(x\) minimizing \(f(x)\).