MedianFilter#
- class deepinv.models.MedianFilter(kernel_size=9, padding=0, same=True)[source]#
Bases:
Denoiser
Median filter.
It computes the median value of a sliding window over the input tensor. The window is defined by the kernel size.
- Parameters:
kernel_size (int) – size of pooling kernel, int or 2-tuple
padding – pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad
same – override padding and enforce same padding, boolean
- forward(x, sigma=None, **kwargs)[source]#
Applies denoiser \(\denoiser{x}{\sigma}\).
- Parameters:
x (torch.Tensor) – noisy input.
sigma (torch.Tensor, float) – noise level.
- Returns:
(torch.Tensor) Denoised tensor.
Examples using MedianFilter
:#
Image transforms for equivariance & augmentations
Image transforms for equivariance & augmentations
Building your custom sampling algorithm.
Building your custom sampling algorithm.