random_choice#
- deepinv.physics.functional.random_choice(a, size=None, replace=True, p=None, rng=None)[source]#
PyTorch equivalent of
numpy.random.choice()- Parameters:
a (torch.Tensor) – the 1-D input tensor
replace (bool) – whether to sample with replacement. Default is True, meaning that a value of
acan be selected multiple times.p (torch.Tensor) – the probabilities for each entry in
a. If not given, the sample assumes a uniform distribution over all entries ina.
- Returns:
the generated random samples in the same device as
a.
- Examples:
>>> import torch >>> from deepinv.physics.functional import random_choice >>> a = torch.tensor([1.,2.,3.,4.,5.]) >>> p = torch.tensor([0,0,1.,0,0]) >>> print(random_choice(a, 2, replace=True, p=p)) tensor([3., 3.])